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Definitionen: Innerere Punkte & Randpunkte in der Ebene

Um einen innerer Punkt einer Menge D C R? existiert ein Kreis,
der vollstandig in D liegt.

Um einen Randpunkt einer Menge D C R? existiert kein Kreis,
der vollstandig in D liegt.

Randpunkt GD

innerer Punkt

©
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Notwendige Bedingungen fiir innere Extremstellen

Sei f: D — R mit D C R? differenzierbar.

Die Funktion f kann nur dann ein Maximum oder ein Minimum in
einem inneren Punkt (xo, yo) ihres Definitionsbereichs D
annehmen, wenn dieser eine stationare Stelle ist — d.h. wenn der
Punkt (x,y) = (x0, yo) die zwei folgenden Gleichungen erfiillt:

f{(x,y) =0, und f(x,y) =0

Diese werden Bedingungen erster Ordnung genannt.
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Beispiel 17.1.1
Die Funktion f sei fiir alle (x,y) € R? definiert durch

f(x,y) = —2x* = 2xy — 2y* + 36x + 42y — 158

Setze voraus, dass f eine Maximumstelle hat und bestimme diese.
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17.2 Zwei Variablen: Hinreichende Bedingungen

Sei die Funktion z = f(x, y) von zwei Variablen definiert auf einer
konvexen Menge D und sei (xo, yo) eine innere stationdre Stelle
in D. Dann gilt:

a) Falls die Funktion f konkav ist,
ist (xo, y0) eine Maximumstelle.

b) Falls die Funktion f konvex ist,
ist (x0, o) eine Minimumstelle.

Diese Bedingungen sind also identisch zum Fall von Funktionen
einer Variablen!
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Beispiel 17.1.4 (Gewinnmaximierung)
Die Gewinnfunktion einer Firma sei gegeben durch

101
m(x,y)=12-x2-y4 —1,2.-x—0,6-y

Wie lautet das Gewinnmaximum (falls es eines gibt)?

Bestatige, dass es sich tatsdchlich um ein Maximum handelt.
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17.3 Lokale Extremstellen
Sei f: D — R mit D C R2.

Der Punkt (xo, yo) ist eine lokale Maximumstelle von f in der
Menge D, wenn es eine Zahl r > 0 gibt, sodass f(x,y) < f(xo, yo)
fiir alle Paare (x,y) in D mit geringerem Abstand zu (xo, yo), als r.

Wenn die Ungleichung strikt ist fiir alle (x, y) # (xo, o), dann ist
(x0, Y0) eine strikte lokale Maximumstelle.

Ist die Ungleichung umgekehrt, handelt es sich bei (xg, yo) um eine
lokale Minimumstelle, die ggf. strikt ist.

D
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Sattelstelle

Eine stationare Stelle, welche keine lokale Extremstelle ist, heiBt
Sattelstelle.
Eine Sattelstelle (xo, yo) hat die Eigenschaft, dass es fiir jede Zahl

r > 0 zwei Punkte (x1,y1), (x2,2) in D im Umkreis r von (xo, yo)
gibt mit f(x1,y1) < f(x0,%0) < f(x2, y2).
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Test der zweiten Ableitungen auf lokale Extrema

Sei f zweimal stetig differenzierbar und sei (xo, o) eine innere
stationdre Stelle.

Es sei " die Hessematrix von f und
A(x0, o) = f{1(x0, Y0)f35(x0, Yo) — f31(x0, ¥0) f{5(X0, ¥0)-

(a) Wenn f7(x0,¥0) < 0 und A(xo, y0) > 0,
dann ist (xo, yo) eine strikte lokale Maximumstelle.

(b) Wenn f{(x0, y0) > 0 und A(xo, yo) > 0,
dann ist (xo, yo) eine strikte lokale Minimumstelle.

(c) Wenn A(xo, y0) < 0, dann ist (xo, o) eine Sattelstelle.

(d) Wenn A(xo, o) = 0, dann kann (xo, yo) eine lokale
Maximumstelle, eine lokale Minimumstelle oder eine
Sattelstelle sein.
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17.4 Beispiel: Diskriminierende Monopolistin

Die Mensa kann Essen an Studierende (S) und Mitarbeitende (M)
zu unterschiedlichen Preisen ps und pps verkaufen.

Die Nachfragefunktionen fiir Mensaessen lauten:
Ds(ps) = max{6000 — 1000p, 0}

und
Dun(pm) = max{1000 — 100pp;, 0}

Pro Essen fallen konstante Stiickkosten von 1 an.

Welche Preise pg und py, maximieren den Gewinn der Mensa?

Welcher Preis p* maximiert den Gewinn der Mensa, falls
Preisdiskriminierung verboten ist?

Modul 1 Methodische Grundlagen: Mathematik Kapitel 17, Lars Metzger, WS 2025/26, =x Kontakt 13 /31


mailto:mathe.wiwi@tu-dortmund.de

17.4 Einfache Lineare Regression

Schétzung des statistischen Zusammenhangs zwischen einer
erklarenden Variablen (,,Regressor”, x) und einer erklarten
Variablen (, Regressand”, y).
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Einfache Lineare Regression

Stichprobe mit Umfang n:

y1 X1

Y2 X2

Yn Xn
———
y: Regressand x: Regressor

Es gelte x; # x; fiir mindestens ein i,j =1,...,n, i #].

Modell:
yi=a+x-B4efiri=1,...,n

Unbekannte Parameter «, 8
Unbekannter Stérterm ¢;, i=1,...,n
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Einfache Lineare Regression — Grafische Darstellung

Vermutete Parameter: a, b — Prognose y; = a + bx;
Schéatzfehler (hangt von a, b ab): r; = y; — ¥

y Regressionsgerade
°

Steigung: b

Yif-mmmmmm o

Yif--2---=
r?: quadrierter Schitzfehler

° ! A~
Gesucht: Schatzer &, 3, welche Y 7, r,.2 minimieren.
|

Xj X
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Einfache Lineare Regression
Zielfunktion f : R? — R mit

n

fa,b) =Y (vi—a—b-x)

i=1

Partielle Ableitungen 1. Ordnung:
fl(ab) = = 2yi—a—b-x)
i=1

Bab) = =) 2yi—a—b-x)-x
i=1

Partielle Ableitungen 2. Ordnung:

BN 2n 2Xx L
fy ) 227:1’(/' 227:1)92 B
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Einfache Lineare Regression

Sei (&, () ein stationirer Punkt von f.
Hinreichende Bedingungen fiir ein Minimum:
> fli=2n>0V
> £, =2nxx >0V
> 1 =(2n)? -xx > (2n)? - X2 = 4 & XX — XX >0V

= f ist streng konvex in a, b

= der innere stationdre Punkt &,B ist eine Minimumstelle.
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17.5 Extremwertsatz: offene und abgeschlossene Menge

Eine Menge D ist offen, wenn sie nur aus inneren Punkten besteht.

/’ ~
. ~

l: offene Menge )

/7
A -
~ -

Eine Menge D ist abgeschlossen, wenn sie alle ihre Randpunkte
enthalt.
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Beispiel: Budgetmenge

x>0

y§o

{(x,y) €R?x,y > 0,px - x +p, -y < m}

W =0

% i
px-X%4py,-y <m

= Alle Randpunkte sind in der Budgetmenge enthalten.

Schwache Ungleichungen:

= Die Budgetmenge ist abgeschlossen.
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17.5 Extremwertsatz: beschrankte Menge

Eine Menge D C R? heiBt beschrinkt, falls es einen Kreis mit
endlichem Radius r < oo gibt, der D vollstidndig enthalt.

Beispiel Budgetmenge:
Wahle r = max{ m M } Der Mittelpunkt des Kreises sei (0, 0).

P By

Eine abgeschlossene und beschriankte Menge heiBt kompakt.
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17.5 Der Extremwertsatz

Sei D C R? nichtleer, abgeschlossen und beschrankt.
Sei f : D — R stetig.

Dann existiert eine Stelle (a, b) € D, an der f ein Minimum hat
und es existiert eine Stelle (¢, d) € D, an der f ein Maximum hat:

f(a,b) < f(x,y) < f(c,d)V (x,y) € D

Bemerkung:

Die Bedingungen abgeschlossen und beschrinkt an D sind
hinreichend fiir die Existenz von Extremstellen, aber nicht
notwendig.

So hat zum Beispiel fiir D = Ré die Funktion f(x,y) = —x—y
ein Maximum an der Stelle (0,0), Rzz ist aber nicht beschrankt.
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Das Auffinden der Maxima und Minima

Um die Maximum- und Minimumwerte einer differenzierbaren
Funktion f, die auf einer abgeschlossenen und beschriankten Menge
D c R? definiert ist, zu finden, gehe wie folgt vor:

(i) Bestimme alle stationdren Stellen von f im Innern von D.

(ii) Bestimme den groBten und kleinsten Wert von f auf allen
Teilstiicken des Randes von D und die zugehdrigen Stellen.

(iii) Berechne die Werte der Funktion an allen Stellen, die in (i)
und (ii) gefunden wurden. Der groBte Funktionswert ist der
Maximalwert von f in D. Der kleinste Funktionswert ist der
Minimalwert von f in D.
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Ein nitzliches Resultat

Sei f: D — R mit D C R? und Wertebereich R = (D).
Sei g : R — R und sei (x*,y*) in D.
Definiere h: D — R durch g(x,y) = g(f(x,y)).

(a) Wenn g monoton wachsend ist und (x*, y*) die Funktion f
maximiert, dann maximiert dieselbe Stelle (x*, y*) auch h.

(b) Wenn g strikt monoton wachsend ist, dann maximiert (x*, y*)
die Funktion f genau dann, wenn (x*, y*) die Funktion h
maximiert.
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17.7 Komparative Statik und das Envelope-Theorem

Sei f: D — R mit D C R? differenzierbar.
Fiir (x,r) € D bezeichne x eine Variable und r einen Parameter.

Fiir das Optimierungsproblem
max f(x,r)

X

bezeichne x*(r) den Wert x, welcher f bei gegebenem Parameter r
maximiert.

Definiere die Optimalwertfunktion

*(r) .= f(x*(r),r)
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Beispiel: Gewinnmaximierung

Outputmenge x > 0, Preis r, Kosten C(x) = x2.

= 7(x,r) = rx — x*
Bedingung erster Ordnung fiir x:

Wi(x,r):r—2x$0$x*(r):%

Optimalwertfunktion:

() =7 (X (1)) = 1~ (5)2 -
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Beispiel: Gewinnmaximierung — dig¢ ,, Umhiillende" 77(r)
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Beispiel: Gewinnmaximierung — die ,,Umhiillende"” 77(r)

m(r)

An der Stelle 7 sind 77 (r) und (X%, r) tangential!
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Envelope-Theorem

Sei f : D — R differenzierbar mit D C R2?,
Es bezeichne x eine Variable und r einen Parameter.

Sei x*(r) der Wert von x, der f(x,r) fiir r maximiert und sei
(x*(r), r) ein innerer Punkt von D. Fiir f*(r) := f(x*(r), r) gilt

dann:
df*(r) _ 0f(x*(r),r)
dr or

Beweis:

df*(r) _ Of (x*(r), r) dx*(r) N of (x*(r), r)
dr ox dr or

Da x*(r der Wert von x ist, welcher f(x, r) maximiert, gilt
Of (x*(r),r) __ 0
o = 0.
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Anwendung Envelope-Theorem auf Beispiel

m(x,r) = rx — x°

Optimale Menge x*(r) bei gegebenem Preis r:

*r) = L
X (r) - 2
Optimalwertfunktion
2
() =
(="
Es gilt:
or(x,r)
ar
und
dr*(r) _r
dr 2
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Zusammenfassung

» Notwendige Bedingung: stationdre Stelle

» Hinreichende Bedingung fiir stationare Stellen:
Funktion konkav = Maximum
Funktion konvex = Minimum

» Lokale Extremstellen, Sattelstellen
» Beispiel: Gewinnmaximierung, lineare Regression

> Extremwertsatz
offene/abgeschlossene und beschréankte Mengen

» Envelope-Theorem
Variablen, Parameter & Optimalwertfunktion
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