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Definitionen: Innerere Punkte & Randpunkte in der Ebene

Um einen innerer Punkt einer Menge D ⊆ R2 existiert ein Kreis,
der vollständig in D liegt.

Um einen Randpunkt einer Menge D ⊆ R2 existiert kein Kreis,
der vollständig in D liegt.

D

innerer Punkt

Randpunkt
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Notwendige Bedingungen für innere Extremstellen

Sei f : D → R mit D ⊆ R2 differenzierbar.

Die Funktion f kann nur dann ein Maximum oder ein Minimum in
einem inneren Punkt (x0, y0) ihres Definitionsbereichs D
annehmen, wenn dieser eine stationäre Stelle ist – d.h. wenn der
Punkt (x , y) = (x0, y0) die zwei folgenden Gleichungen erfüllt:

f ′1(x , y) = 0, und f ′2(x , y) = 0

Diese werden Bedingungen erster Ordnung genannt.
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Beispiel 17.1.1
Die Funktion f sei für alle (x , y) ∈ R2 definiert durch

f (x , y) = −2x2 − 2xy − 2y2 + 36x + 42y − 158

Setze voraus, dass f eine Maximumstelle hat und bestimme diese.
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Maximumspunkt P , stationäre Stelle (x0, y0)

x

y

z

Dy0

x0

P
Tg

Th

g(x , y0)

h(x0, y)
f (x , y)

Steigung von Tg : f
′
1(x0, y0) = 0 Steigung von Th: f

′
2(x0, y0) = 0
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Sattelpunkt R , stationäre Stelle (x0, y0)

x

y

z

Dy0

x0

R
Tg

Th

g(x , y0)

h(x0, y)

f (x , y)

Steigung von Tg : f
′
1(x0, y0) = 0 Steigung von Th: f

′
2(x0, y0) = 0
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17.2 Zwei Variablen: Hinreichende Bedingungen

Sei die Funktion z = f (x , y) von zwei Variablen definiert auf einer
konvexen Menge D und sei (x0, y0) eine innere stationäre Stelle
in D. Dann gilt:

a) Falls die Funktion f konkav ist,
ist (x0, y0) eine Maximumstelle.

b) Falls die Funktion f konvex ist,
ist (x0, y0) eine Minimumstelle.

Diese Bedingungen sind also identisch zum Fall von Funktionen
einer Variablen!
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f (x , y) = 3xy − x2 − y 2

x

y

z

f ′′11 = −2 und f ′′22 = −2 sind negativ, f ist aber nicht konkav!
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Beispiel 17.1.4 (Gewinnmaximierung)
Die Gewinnfunktion einer Firma sei gegeben durch

π(x , y) = 12 · x
1
2 · y

1
4 − 1, 2 · x − 0, 6 · y

Wie lautet das Gewinnmaximum (falls es eines gibt)?

Bestätige, dass es sich tatsächlich um ein Maximum handelt.
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17.3 Lokale Extremstellen
Sei f : D → R mit D ⊆ R2.

Der Punkt (x0, y0) ist eine lokale Maximumstelle von f in der
Menge D, wenn es eine Zahl r > 0 gibt, sodass f (x , y) ≤ f (x0, y0)
für alle Paare (x , y) in D mit geringerem Abstand zu (x0, y0), als r .

Wenn die Ungleichung strikt ist für alle (x , y) ̸= (x0, y0), dann ist
(x0, y0) eine strikte lokale Maximumstelle.

Ist die Ungleichung umgekehrt, handelt es sich bei (x0, y0) um eine
lokale Minimumstelle, die ggf. strikt ist.

(x0, y0)

r

D

(x , y)
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Sattelstelle

Eine stationäre Stelle, welche keine lokale Extremstelle ist, heißt
Sattelstelle.

Eine Sattelstelle (x0, y0) hat die Eigenschaft, dass es für jede Zahl
r > 0 zwei Punkte (x1, y1), (x2, y2) in D im Umkreis r von (x0, y0)
gibt mit f (x1, y1) < f (x0, y0) < f (x2, y2).

(x0, y0)

(x2, y2)

(x1, y1)
r
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Test der zweiten Ableitungen auf lokale Extrema

Sei f zweimal stetig differenzierbar und sei (x0, y0) eine innere
stationäre Stelle.

Es sei f ′′ die Hessematrix von f und
A(x0, y0) = f ′′11(x0, y0)f

′′
22(x0, y0)− f ′′21(x0, y0)f

′′
12(x0, y0).

(a) Wenn f ′′11(x0, y0) < 0 und A(x0, y0) > 0,
dann ist (x0, y0) eine strikte lokale Maximumstelle.

(b) Wenn f ′′11(x0, y0) > 0 und A(x0, y0) > 0,
dann ist (x0, y0) eine strikte lokale Minimumstelle.

(c) Wenn A(x0, y0) < 0, dann ist (x0, y0) eine Sattelstelle.

(d) Wenn A(x0, y0) = 0, dann kann (x0, y0) eine lokale
Maximumstelle, eine lokale Minimumstelle oder eine
Sattelstelle sein.
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17.4 Beispiel: Diskriminierende Monopolistin

Die Mensa kann Essen an Studierende (S) und Mitarbeitende (M)
zu unterschiedlichen Preisen pS und pM verkaufen.

Die Nachfragefunktionen für Mensaessen lauten:

DS(ps) = max{6000− 1000ps , 0}

und
DM(pM) = max{1000− 100pM , 0}

Pro Essen fallen konstante Stückkosten von 1 an.

Welche Preise p∗S und p∗M maximieren den Gewinn der Mensa?

Welcher Preis p∗ maximiert den Gewinn der Mensa, falls
Preisdiskriminierung verboten ist?
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17.4 Einfache Lineare Regression

Schätzung des statistischen Zusammenhangs zwischen einer
erklärenden Variablen (

”
Regressor“, x) und einer erklärten

Variablen (
”
Regressand“, y).

y

xxi

yi
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Einfache Lineare Regression

Stichprobe mit Umfang n:
y1
y2
...
yn


︸ ︷︷ ︸

y: Regressand


x1
x2
...
xn


︸ ︷︷ ︸
x: Regressor

Es gelte xi ̸= xj für mindestens ein i , j = 1, . . . , n, i ̸= j .

Modell:
yi = α+ xi · β + ϵi für i = 1, . . . , n

Unbekannte Parameter α, β
Unbekannter Störterm ϵi , i = 1, . . . , n

Modul 1 Methodische Grundlagen: Mathematik Kapitel 17, Lars Metzger, WS 2025/26, B Kontakt 15 / 31

mailto:mathe.wiwi@tu-dortmund.de


Einfache Lineare Regression – Grafische Darstellung

Vermutete Parameter: a, b → Prognose ŷi = a+ bxi

Schätzfehler (hängt von a, b ab): ri = yi − ŷi

y

x

a

Regressionsgerade

Steigung: b

xi

yi

ŷi
r2i

r2i : quadrierter Schätzfehler

Gesucht: Schätzer α̂, β̂, welche
∑n

i=1 r
2
i minimieren.
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Einfache Lineare Regression
Zielfunktion f : R2 → R mit

f (a, b) =
n∑

i=1

(yi − a− b · xi )2

Partielle Ableitungen 1. Ordnung:

f ′1(a, b) = −
n∑

i=1

2(yi − a− b · xi )

f ′2(a, b) = −
n∑

i=1

2(yi − a− b · xi ) · xi

Partielle Ableitungen 2. Ordnung:(
f ′′11 f ′′12
f ′′21 f ′′22

)
=

(
2n 2

∑n
i=1 xi

2
∑n

i=1 xi 2
∑n

i=1 x
2
i

)
= 2n

(
1 x̄
x̄ xx

)
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Einfache Lineare Regression

Sei (α̂, β̂) ein stationärer Punkt von f .

Hinreichende Bedingungen für ein Minimum:

▶ f ′′11 = 2n > 0 ✓

▶ f ′′22 = 2nxx > 0 ✓

▶ f ′′11f
′′
22 = (2n)2 · xx > (2n)2 · x̄2 = f ′′12f

′′
21 ⇔ xx − x̄ x̄ > 0 ✓

⇒ f ist streng konvex in a, b

⇒ der innere stationäre Punkt α̂, β̂ ist eine Minimumstelle.
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17.5 Extremwertsatz: offene und abgeschlossene Menge
Eine Menge D ist offen, wenn sie nur aus inneren Punkten besteht.

offene Menge

Eine Menge D ist abgeschlossen, wenn sie alle ihre Randpunkte
enthält.

abgeschlossene Menge
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Beispiel: Budgetmenge

{(x , y) ∈ R2|x , y ≥ 0, px · x + py · y ≤ m}

y

x

x ≥ 0

y ≥ 0

px · x + py · y ≤ m

Schwache Ungleichungen:

⇒ Alle Randpunkte sind in der Budgetmenge enthalten.

⇒ Die Budgetmenge ist abgeschlossen.
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17.5 Extremwertsatz: beschränkte Menge

Eine Menge D ⊂ R2 heißt beschränkt, falls es einen Kreis mit
endlichem Radius r < ∞ gibt, der D vollständig enthält.

Beispiel Budgetmenge:

Wähle r = max
{

m
px
, m
py

}
. Der Mittelpunkt des Kreises sei (0, 0).

Eine abgeschlossene und beschränkte Menge heißt kompakt.
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17.5 Der Extremwertsatz

Sei D ⊆ R2 nichtleer, abgeschlossen und beschränkt.

Sei f : D → R stetig.

Dann existiert eine Stelle (a, b) ∈ D, an der f ein Minimum hat
und es existiert eine Stelle (c , d) ∈ D, an der f ein Maximum hat:

f (a, b) ≤ f (x , y) ≤ f (c, d) ∀ (x , y) ∈ D

Bemerkung:

Die Bedingungen abgeschlossen und beschränkt an D sind
hinreichend für die Existenz von Extremstellen, aber nicht
notwendig.

So hat zum Beispiel für D = R2
≥ die Funktion f (x , y) = −x − y

ein Maximum an der Stelle (0, 0), R2
≥ ist aber nicht beschränkt.
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Das Auffinden der Maxima und Minima

Um die Maximum- und Minimumwerte einer differenzierbaren
Funktion f , die auf einer abgeschlossenen und beschränkten Menge
D ⊂ R2 definiert ist, zu finden, gehe wie folgt vor:

(i) Bestimme alle stationären Stellen von f im Innern von D.

(ii) Bestimme den größten und kleinsten Wert von f auf allen
Teilstücken des Randes von D und die zugehörigen Stellen.

(iii) Berechne die Werte der Funktion an allen Stellen, die in (i)
und (ii) gefunden wurden. Der größte Funktionswert ist der
Maximalwert von f in D. Der kleinste Funktionswert ist der
Minimalwert von f in D.
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Ein nützliches Resultat

Sei f : D → R mit D ⊆ R2 und Wertebereich R = f (D).

Sei g : R → R und sei (x∗, y∗) in D.

Definiere h : D → R durch g(x , y) = g(f (x , y)).

(a) Wenn g monoton wachsend ist und (x∗, y∗) die Funktion f
maximiert, dann maximiert dieselbe Stelle (x∗, y∗) auch h.

(b) Wenn g strikt monoton wachsend ist, dann maximiert (x∗, y∗)
die Funktion f genau dann, wenn (x∗, y∗) die Funktion h
maximiert.
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17.7 Komparative Statik und das Envelope-Theorem

Sei f : D → R mit D ⊆ R2 differenzierbar.

Für (x , r) ∈ D bezeichne x eine Variable und r einen Parameter.

Für das Optimierungsproblem

max
x

f (x , r)

bezeichne x∗(r) den Wert x , welcher f bei gegebenem Parameter r
maximiert.

Definiere die Optimalwertfunktion

f ∗(r) := f (x∗(r), r)
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Beispiel: Gewinnmaximierung

Outputmenge x ≥ 0, Preis r , Kosten C (x) = x2.

⇒ π(x , r) = rx − x2

Bedingung erster Ordnung für x :

π′
1(x , r) = r − 2x

!
= 0 ⇒ x∗(r) =

r

2

Optimalwertfunktion:

π∗(r) = π(x∗(r), r) = r
r

2
−
( r
2

)2
=

r2

4
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Beispiel: Gewinnmaximierung – die
”
Umhüllende“ π∗(r)

x

r

π(x , r)

π(x̂ , r)

x∗(r)

r̂

x̂
= x∗(r̂)

π(x , r̂)

π(x∗(r), r)π∗(r)

π∗(r̂)
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Beispiel: Gewinnmaximierung – die
”
Umhüllende“ π∗(r)

π∗(r)

r
r̂

π(x̂ , r)

π∗(r)

An der Stelle r̂ sind π∗(r) und π(x̂ , r) tangential!
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Envelope-Theorem

Sei f : D → R differenzierbar mit D ⊆ R2,

Es bezeichne x eine Variable und r einen Parameter.

Sei x∗(r) der Wert von x , der f (x , r) für r maximiert und sei
(x∗(r), r) ein innerer Punkt von D. Für f ∗(r) := f (x∗(r), r) gilt
dann:

df ∗(r)

dr
=

∂f (x∗(r), r)

∂r

Beweis:

df ∗(r)

dr
=

∂f (x∗(r), r)

∂x

dx∗(r)

dr
+

∂f (x∗(r), r)

∂r

Da x∗(r) der Wert von x ist, welcher f (x , r) maximiert, gilt
∂f (x∗(r),r)

∂x = 0.

Modul 1 Methodische Grundlagen: Mathematik Kapitel 17, Lars Metzger, WS 2025/26, B Kontakt 29 / 31

mailto:mathe.wiwi@tu-dortmund.de


Anwendung Envelope-Theorem auf Beispiel

π(x , r) = rx − x2

Optimale Menge x∗(r) bei gegebenem Preis r :

x∗(r) =
r

2

Optimalwertfunktion

π∗(r) =
r2

4

Es gilt:
∂π(x , r)

∂r
= x

und
dπ∗(r)

dr
=

r

2
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Zusammenfassung

▶ Notwendige Bedingung: stationäre Stelle

▶ Hinreichende Bedingung für stationäre Stellen:
Funktion konkav ⇒ Maximum
Funktion konvex ⇒ Minimum

▶ Lokale Extremstellen, Sattelstellen

▶ Beispiel: Gewinnmaximierung, lineare Regression

▶ Extremwertsatz
offene/abgeschlossene und beschränkte Mengen

▶ Envelope-Theorem
Variablen, Parameter & Optimalwertfunktion
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