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Definitionen: Innerere Punkte & Randpunkte in der Ebene

Um einen innerer Punkt einer Menge D C R? existiert ein Kreis,
der vollstandig in D liegt.

Um einen Randpunkt einer Menge D C R? existiert kein Kreis,
der vollstandig in D liegt.

Randpunkt GD

innerer Punkt

©
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Notwendige Bedingungen fiir innere Extremstellen

Sei f: D — R mit D C R? differenzierbar.

Die Funktion f kann nur dann ein Maximum oder ein Minimum in
einem inneren Punkt (xo, yo) ihres Definitionsbereichs D
annehmen, wenn dieser eine stationare Stelle ist — d.h. wenn der
Punkt (x,y) = (x0, yo) die zwei folgenden Gleichungen erfiillt:

f{(x,y) =0, und f(x,y) =0

Diese werden Bedingungen erster Ordnung genannt.
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Beispiel 17.1.1
Die Funktion f sei fiir alle (x,y) € R? definiert durch

f(x,y) = —2x* = 2xy — 2y* + 36x + 42y — 158

Setze voraus, dass f eine Maximumstelle hat und bestimme diese.
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Stelle (Xo,yb)
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Sattelpunkt R
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17.2 Zwei Variablen: Hinreichende Bedingungen

Sei die Funktion z = f(x, y) von zwei Variablen definiert auf einer
konvexen Menge D und sei (xo, yo) eine innere stationdre Stelle
in D. Dann gilt:

a) Falls die Funktion f konkav ist,
ist (xo, y0) eine Maximumstelle.

b) Falls die Funktion f konvex ist,
ist (x0, o) eine Minimumstelle.

Diese Bedingungen sind also identisch zum Fall von Funktionen
einer Variablen!
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Beispiel 17.1.4 (Gewinnmaximierung

Die Gewinnfunktion einer Firma sei gegében durch
Preis [,

X 2o
foo —
Outi w(x,y) =ADx ys/~1,2-x +0,6-y)  37°
WKoSfen
Wie lautet das Gewinnmaximum (falls es eines gibt)?

Prad ‘{fu'g&-.lfm. (\’-(.‘. a

Bestatige, dass es sich tatsdchlich um ein Maximum handelt
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17.3 Lokale Extremstellen
Sei f: D — R mit D C R2.

Der Punkt (xo, yo) ist eine lokale Maximumstelle von f in der
Menge D, wenn es eine Zahl r > 0 gibt, sodass f(x,y) < f(xo, yo)
fiir alle Paare (x,y) in D mit geringerem Abstand zu (xo, yo), als r.

Wenn die Ungleichung strikt ist fiir alle (x, y) # (xo, o), dann ist
(x0, Y0) eine strikte lokale Maximumstelle.

Ist die Ungleichung umgekehrt, handelt es sich bei (xg, yo) um eine
lokale Minimumstelle, die ggf. strikt ist.

D
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Sattelstelle

Eine stationare Stelle, welche keine lokale Extremstelle ist, heiBt
Sattelstelle.
Eine Sattelstelle (xo, yo) hat die Eigenschaft, dass es fiir jede Zahl

r > 0 zwei Punkte (x1,y1), (x2,2) in D im Umkreis r von (xo, yo)
gibt mit f(x1,y1) < f(x0,%0) < f(x2, y2).
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Test der zweiten Ableitungen auf lokale Extrema

Sei f zweimal stetig differenzierbar und sei (xo, o) eine innere

stationidre Stelle. L. Alqelra 2 Delerminanle ofe
Hegs ewr mbere !

Es sei " die Hessematrix von f und
A(x0, o) = f{1(x0, Y0)f35(x0, Yo) — f31(x0, ¥0) f{5(X0, ¥0)-

(a) Wenn £7(x0,¥0) < 0 und A(xo, y0) > 0,
dann ist (xo, yo) eine strikte lokale Maximumstelle.

(b) Wenn f{(xo0, y0) > 0 und A(xo, yo) > 0,
dann ist (xo, yo) eine strikte lokale Minimumstelle.

(c) Wenn A(xo, y0) < 0, dann ist (xo, o) eine Sattelstelle.

(d) Wenn A(xo, o) = 0, dann kann (xo, yo) eine lokale
Maximumstelle, eine lokale Minimumstelle oder eine
Sattelstelle sein.
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17.4 Beispiel: Diskriminierende Monopolistin

Die Mensa kann Essen an Studierende (S) und Mitarbeitende (M)
zu unterschiedlichen Preisen ps und pps verkaufen.

Die Nachfragefunktionen fiir Mensaessen lauten:
Ds(ps) = max{6000 — 1000p, 0}

und
Dun(pm) = max{1000 — 100pp;, 0}

Pro Essen fallen konstante Stiickkosten von 1 an.

Welche Preise pg und py, maximieren den Gewinn der Mensa?

Welcher Preis p* maximiert den Gewinn der Mensa, falls
Preisdiskriminierung verboten ist?
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17.4 Einfache Lineare Regression

Schétzung des statistischen Zusammenhangs zwischen einer
erklarenden Variablen (,,Regressor”, x) und einer erklarten
Variablen (, Regressand”, y).

y
° L]
o o .... $
e o ° °
[ ) [ )
¢ (X ]
_yl ,,!,!,,,‘,,,,‘,:.“. ¢ *
. l
y l
X X
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Einfache Lineare Regression

Stichprobe mit Umfang n:

y1 X1
Y2 X2
Yn Xn
y: Regressand x: Regressor

Es gelte x; # x; fiir mindestens ein /,j =1,..
/4’0‘5(..- b c'{'m#

Modell: ’

%ilsi/":’

Unbekannte Parameter «, 8
Unbekannter Stérterm ¢;, i=1,...,n
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Einfache Lineare Regression — Grafische Darstellung

Vermutete Parameter: a, b — Prognose y; = a + bx;
Schéatzfehler (hangt von a, b ab): r; = y; — ¥

y Regressionsgerade
°

Steigung: b

Yif-mmmmmm o

Yif--2---=
r?: quadrierter Schitzfehler

° ! A~
Gesucht: Schatzer &, 3, welche Y 7, r,.2 minimieren.
|

Xj X
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Einfache Lineare Regression p

Zielfunktion f : RZ — R mit ("\../&5:\
(_a!- Lxl')

_ g k. )2

f(a,b) = Z;(u__vlz_ﬁ)

Partielle Ableitungen 1. Ordnung:

fl(ab) = = 2yi—a—b-x)
i1

n r
Bab) = =) 2yi—a—b-x)-x ZO
i=1

Partielle Ableitungen 2. Ordnung: /

G2 (2 2SR ) san( NE
fy ) 227:1’0 227:1)92 B X' XX 3o
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Einfache Lineare Regression

Sei (&, () ein stationirer Punkt von f.
Hinreichende Bedingungen fiir ein Minimum:
> fli=2n>0V
> £, =2nxx >0V
> 1 =(2n)? -xx > (2n)? - X2 = 4 & Xx — XX >0V

= f ist streng konvex in a, b

= der innere stationdre Punkt &,B ist eine Minimumstelle.
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17.5 Extremwertsatz: offene und abgeschlossene Menge

Eine Menge D ist offen, wenn sie nur aus inneren Punkten besteht.

/’ ~
. ~

l: offene Menge )

/7
A -
~ -

Eine Menge D ist abgeschlossen, wenn sie alle ihre Randpunkte
enthalt.
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Beispiel: Budgetmenge

Schwache Ungleichungen:
= Alle Randpunkte sind in der Budgetmenge enthalten.

= Die Budgetmenge ist abgeschlossen.
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17.5 Extremwertsatz: beschrankte Menge

Eine Menge D C R? heiBt beschrinkt, falls es einen Kreis mit
endlichem Radius r < oo gibt, der D vollstidndig enthalt.

Beispiel Budgetmenge:
Wahle r = max{ m M } Der Mittelpunkt des Kreises sei (0, 0).

P By

Eine abgeschlossene und beschriankte Menge heiBt kompakt.
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17.5 Der Extremwertsatz

Sei D C R? nichtleer, abgeschlossen und beschrankt.
W
Seif:D — R__S_t_eil_g_ low pu tcp

Dann existiert eine Stelle (a, b) € D, an der f ein Minimum hat
und es existiert eine Stelle (¢, d) € D, an der f ein Maximum hat:

f(a,b) < f(x,y) < f(c,d)V (x,y) € D

Bemerkung:

Die Bedingungen abgeschlossen und beschrinkt an D sind
hinreichend fiir die Existenz von Extremstellen, aber nicht
notwendig.

So hat zum Beispiel fiir D = RZZ die Funktion f(x,y) = —x—y
ein Maximum an der Stelle (0,0), Rzz ist aber nicht beschrankt.
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Das Auffinden der Maxima und Minima

Um die Maximum- und Minimumwerte einer differenzierbaren
Funktion f, die auf einer abgeschlossenen und beschriankten Menge
D c R? definiert ist, zu finden, gehe wie folgt vor:

(i) Bestimme alle stationdren Stellen von f im Innern von D.

(ii) Bestimme den groBten und kleinsten Wert von f auf allen
Teilstiicken des Randes von D und die zugehdrigen Stellen.

(iii) Berechne die Werte der Funktion an allen Stellen, die in (i)
und (ii) gefunden wurden. Der groBte Funktionswert ist der
Maximalwert von f in D. Der kleinste Funktionswert ist der
Minimalwert von f in D.
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Ein nitzliches Resultat

Sei f: D — R mit D C R? und Wertebereich R = (D).
Sei g : R — R und sei (x*,y*) in D.
Definiere h: D — R durch g(x,y) = g(f(x,y)).

(a) Wenn g monoton wachsend ist und (x*, y*) die Funktion f
maximiert, dann maximiert dieselbe Stelle (x*, y*) auch h.

(b) Wenn g strikt monoton wachsend ist, dann maximiert (x*, y*)
die Funktion f genau dann, wenn (x*, y*) die Funktion h
maximiert.
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17.7 Komparative Statik und das Envelope-Theorem

Sei f: D — R mit D C R? differenzierbar.

Fiir (x,r) € D bezeichne x eine Variable und r eipen Parameter.

Fiir das Optimierungsproblem

max f(x

bezeichne x*(r) den Wert x
maximiert.

elcher f bei gegebenem Parameter r

Definiere die Optimalwertfunktion

*(r) .= f(x*(r),r)
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Beispiel: Gewinnmaximierung

Outputmenge x > 0, Preis r, Kosten C(x) = x2.

= 7(x,r) = rx — x*
Bedingung erster Ordnung fiir x:

Wi(X, ry=r—

Optimalwertfunktion:

(r) =7(x"(r),r) =r5 = (5)2 T4
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Beispiel: Gewinnmaximierung — di¢ ,, Umhiillende" 77(r)

m(x,r)

e
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Beispiel: Gewinnmaximierung — die ,,Umhiillende"” 77(r)

An dér Stelle 7 sind 7" (r) und 7(X, r) tangential!
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Envelope-Theorem

Sei f : D — R differenzierbar mit D C R2?,
Es bezeichne x eine Variable und r einen Paramet

Sei x*(r) der Wert von x, der f(x,r) fiir r imiert und sei
(x*(r), r) ein innerer Punkt von D. Fiir £X(r) := f(x*(r), r) gilt
dann:

Beweis:
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Anwendung Envelope-Theorem auf Beispiel

m(x,r) = rx — x°

Optimale Menge x*(r) bei gegebenem Preis r:

Optimalwertfunktion

Es gilt:
or(x,r)
ar
und
dr*(r) _r
dr 2
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Zusammenfassung

» Notwendige Bedingung: stationdre Stelle

» Hinreichende Bedingung fiir stationare Stellen:
Funktion konkav = Maximum
Funktion konvex = Minimum

» Lokale Extremstellen, Sattelstellen
» Beispiel: Gewinnmaximierung, lineare Regression

> Extremwertsatz
offene/abgeschlossene und beschréankte Mengen

heorem
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