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15.1 Eine einfache Kettenregel

Wenn z = f (x , y) mit x = g(t) und y = h(t) ist, dann gilt

dz

dt
= f ′1(x , y)

dx

dt
+ f ′2(x , y)

dy

dt

Diese Ableitung heißt die totale Ableitung von z bezüglich t.
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Beispiel
Alfreds Nutzen aus dem Konsum von Pasta (x > 0) und Parmesan
(y > 0) sei gegeben durch:

u(x , y) = 2 ln(x) + ln(y)

Die Menge von Pasta x und Parmesan y hängt von Alfreds
Einkommen m > 0 ab:

x(m) =
2

3
·m y(m) =

1

3
·m

Bestimme du
dm !
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15.2 Kettenregel für zwei Variablen

Wenn z = f (x , y) mit x = g(t, s) und y = h(t, s), dann gilt:

∂z

∂t
= f ′1(x , y)

∂x

∂t
+ f ′2(x , y)

∂y

∂t

und
∂z

∂s
= f ′1(x , y)

∂x

∂s
+ f ′2(x , y)

∂y

∂s
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15.3 Implizites Differenzieren entlang einer Höhenlinie

Wenn f differenzierbar, f (x , y) = c und f ′2(x , y) ̸= 0, dann gilt:

dy

dx
= − f ′1(x , y)

f ′2(x , y)

P

x
f (x , y) = c

y
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15.6 Homogene Funktionen von zwei Variablen

Eine Funktion f von zwei Variablen x und y heißt homogen vom
Grad k, wenn

f (tx , ty) = tk f (x , y)

für alle t > 0 und für alle x , y .

Die Multiplikation beider Variablen mit einem positiven Faktor t
wird den Wert der Funktion mit dem Faktor tk multiplizieren.
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Geometrische Aspekte homogener Funktionen

Sei f (x , y) homogen vom Grad k = 1.

x

y
z

(x0, y0)

(tx0, ty0)
c

tc
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Höhenlinien für eine homogene Funktion

x

y

f (x , y) = c

f (tx , ty) = tkc

C (x2, y2)

B (tx2, ty2)

D (x1, y1)

A (tx1, ty1)
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15.8 Lineare Approximation

Wiederholung: Funktionen einer Variablen

Die lineare Approximation von f (x) um (x0) ist

f (x) ≈ f (x0) + f ′(x0)(x − x0)

Die lineare Approximation von f (x , y) um (x0, y0) ist

f (x , y) ≈ f (x0, y0) + f ′1(x0, y0)(x − x0) + f ′2(x0, y0)(y − y0)
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Die Tangentialebene
Im Punkt P = (x0, y0, z0) mit z0 = f (x0, y0) hat die
Tangentialebene an den Graphen von z = f (x , y) die Gleichung

z − z0 = f ′1(x0, y0)(x − x0) + f ′2(x0, y0)(y − y0)

x

y

z

y0

x0

P

Tangentialebene

Ky

Kx

z = f (x , y)
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15.9 Differentiale und Zuwächse

Sei f : D → R differenzierbar mit D ⊆ R2.

Seien dx , dy ∈ R.

Das Differential von z = f (x , y) an der Stelle (x , y):

dz oder df = f ′1(x , y)dx + f ′2(x , y)dy

Der Zuwachs von z = f (x , y) an der Stelle (x , y):

∆z = f (x + dx , y + dy)− f (x , y)

Falls |dx | und |dy | klein:

f (x + dx , y + dy) ≈ f (x , y) + f ′1(x , y)dx + f ′2(x , y)dy ⇔ ∆z ≈ dz
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Das Differential dz und der Zuwachs ∆z

Sz = f (x0, y0)︸ ︷︷ ︸
z0

+ f ′1(x0, y0)dx + f ′2(x0, y0)dy︸ ︷︷ ︸
dz

x

y

z

y0 + dy Q

x0 + dx

y0

x0

P

R = (x0 + dx , y0 + dy , z0 +∆z)

Tangentialebene

z = f (x , y)

S = (x0 + dx , y0 + dy , z0 + dz)
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15.10 Gleichungssysteme: Freiheitsgrade

x1, x2, . . . , xn ∈ R seien n ∈ N Variablen.

Wenn es keine Restriktion an diese Variablen gibt, so gibt es n
Freiheitsgrade.

Müssen diese Variablen eine Gleichung der Form

f1(x1, x2, . . . , xn) = 0

erfüllen, so gibt es noch n − 1 Freiheitsgerade.

Für jede weitere
”
unabhängige“ Restriktion wird die Anzahl der

Freiheitsgrade um 1 reduziert.
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n Variablen mit m Restriktionen

n Variablen erfüllen ein System von m
”
unabhängigen“

Restriktionen, falls

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fm(x1, x2, . . . , xn) = 0

Falls m < n, so verbleiben n −m Freiheitsgrade.
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Feiheitsgrade und Unabhängige Restriktionen

Ein System von m Restriktionen ist unabhängig, falls keine der m
Restriktionen durch die anderen m − 1 Restriktionen impliziert
wird.

Ein System von Gleichungen mit n Variablen hat k
Freiheitsgrade, wenn es eine Menge von k Variablen gibt, die frei
gewählt werden können, während die restlichen n − k Variablen
eindeutig bestimmt sind, sobald den k freien Variablen spezielle
Werte zugeordnet wurden.
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15.11 Differenzieren von Gleichungssystemen

5u + 5v = 2x − 3y

2u + 4v = 3x − 2y

Gleichungssystem mit zwei Gleichungen und vier Variablen
→ zwei Freiheitsgrade

Wir können zwei Variablen frei wählen, die restlichen zwei
Variablen sind dann eindeutig bestimmt.

Zum Beispiel können wir x und y frei wählen;
u und v sind dann Funktionen von x und y .

Durch das Differenzieren des Gleichungssystems nach x und y
können wir die partiellen Ableitungen von u und v nach x und y
berechnen, ohne das Gleichungssystem zu lösen.
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Endogene und exogene Variablen

Im vorangegangenen Beispiel sind x und y exogene Variablen, d.h.
Parameter die in das ökonomische Modell einfließen und

es sind u und v endogene Variablen, d.h. Größen, die vom
ökonomischen Modell erklärt werden.

Das ökonomische Modell hat die Form von strukturellen
Gleichungen:

f (u, v , x , y) = 0

g(u, v , x , y) = 0

Sei (u0, v0) eine Lösung der beiden Gleichungen bei gegebenen
Parametern (x0, y0).
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Implizite Definition und reduzierte Form

Das strukturelle Modell

f (u, v , x , y) = 0

g(u, v , x , y) = 0

definiert die Variablen u und v implizit als Funktionen der
Parameter x und y :

u = u(x , y)

v = v(x , y)

Diese Gleichungen heißen reduzierte Form des Modells.
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Zusammenfassung

▶ Totale Ableitung

▶ Implizites Differenzieren

▶ Homogenität, konstante Skalenerträge

▶ Lineare Approximation

▶ Differentiale und Zuwächse

▶ Komparative Statik mit Gleichungssystemen
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