Vorlesung zu Kapitel 15:1
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15.1 Eine einfache Kettenregel

Wenn z = f(x, y) mit x = g(t) und y = h(t) ist, dann gilt

dz dy
pri fl(x, y) + f(x, V)

Diese Ableitung heiBt die totale Ableitung von z beziiglich t.
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Beispiel
Alfreds Nutzen aus dem Konsum von Pasta (x > 0) und Parmesan
(y > 0) sei gegeben durch:
u(x,y) = 2In(x) + In(y)
Die Menge von Pasta x und Parmesan y hangt von Alfreds
Einkommen m > 0 ab:

du |

Bestimme a
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15.2 Kettenregel fiir zwei Variablen

Wenn z = f(x, y) mit x = g(t,s) und y = h(t,s), dann gilt:

0z Ox , ay
a - fi.(Xay)E—i_fZ(Xay)at
und 5 5 5
9z _ 4 X g 9
85 - fi.(Xa.y)as +7L—2(X7y)as
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15.3 Implizites Differenzieren entlang einer Hohenlinie
Wenn f differenzierbar, f(x,y) = c und f(x,y) # 0, dann gilt:

dy _ fi(xy)
dx  f(x,y)

f(va) =c
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15.6 Homogene Funktionen von zwei Variablen

Eine Funktion f von zwei Variablen x und y heit homogen vom

Grad k, wenn
f(tx, ty) = t“F(x, y)

fiir alle t > 0 und fiir alle x, y.

Die Multiplikation beider Variablen mit einem positiven Faktor t
wird den Wert der Funktion mit dem Faktor t* multiplizieren.
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Geometrische Aspekte homogener Funktionen

Sei f(x,y) homogen vom Grad k = 1.
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Hohenlinien fiir eine homogene Funktion

y

BX(tx2, ty»)

CX(x2,y2

tx1, ty1)
X1, 1) f(tx, ty) = thc

f(va) =cC

X
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15.8 Lineare Approximation
Wiederholung: Funktionen einer Variablen

Die lineare Approximation von f(x) um (xp) ist

f(x) ~ f(x0) + ' (x0)(x — x0)

Die lineare Approximation von f(x,y) um (xo, yo) ist

f(x,y) =~ f(xo,¥0) + f{(x0, ¥0)(x — x0) + £ (0, Y0) (¥ — ¥0)
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Die Tangentialebene
Im Punkt P = (xo, Yo, 20) mit zp = f(xo0, yo) hat die
Tangentialebene an den Graphen von z = f(x, y) die Gleichung

z — 29 = f{(x0, Y0)(x — x0) + f5(x0, o) (¥ — y0)

Tangentialebene

%
i
7
o
i
-
7
W,

7
7

7
7
7

7

e

7y
/4
¥

Modul 1 Methodische Grundlagen: Mathematik Kapitel 15, Lars Metzger, WS 2025/26, =x Kontakt 11 / 20


mailto:mathe.wiwi@tu-dortmund.de

15.9 Differentiale und Zuwachse

Sei f : D — R differenzierbar mit D C R2,
Seien dx, dy € R.
Das Differential von z = f(x, y) an der Stelle (x, y):

dz oder df = f{(x,y)dx + f(x, y)dy

Der Zuwachs von z = f(x, y) an der Stelle (x, y):

Az =f(x+dx,y +dy) —f(x,y)

Falls |dx| und |dy| klein:

f(x +dx,y +dy) =~ f(x,y) + f(x,y)dx + f5(x,y)dy & Az ~ dz
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Das Differential dz und der Zuwachs Az

/
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f(x0, Y0) + f{ (x0, o) dx + f3(x0, Yo)dy
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Xo + dx

(x0 + dx,y0 + dy, z0 + Az)

X0 xg + dx

13 /20

Modul 1 Methodische Grundlagen: Mathematik Kapitel 15, Lars Metzger, WS 2025/26, =2 Kontakt


mailto:mathe.wiwi@tu-dortmund.de

15.10 Gleichungssysteme: Freiheitsgrade

X1,X2,...,%X, € R seien n € N Variablen.

Wenn es keine Restriktion an diese Variablen gibt, so gibt es n
Freiheitsgrade.

Miissen diese Variablen eine Gleichung der Form
fi(x1,x2,...,xp) =0
erfiillen, so gibt es noch n — 1 Freiheitsgerade.

Fiir jede weitere ,,unabhingige” Restriktion wird die Anzahl der
Freiheitsgrade um 1 reduziert.
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n Variablen mit m Restriktionen

n Variablen erfiillen ein System von m ,,unabhingigen*
Restriktionen, falls

fi(x1,x2,...,Xp) =0

f2(X17X2) e 7Xn) = O

fm(x1, %2, ..., %) =0

Falls m < n, so verbleiben n — m Freiheitsgrade.

Modul 1 Methodische Grundlagen: Mathematik Kapitel 15, Lars Metzger, WS 2025/26, =x Kontakt 15 / 20


mailto:mathe.wiwi@tu-dortmund.de

Feiheitsgrade und Unabhangige Restriktionen

Ein System von m Restriktionen ist unabhangig, falls keine der m
Restriktionen durch die anderen m — 1 Restriktionen impliziert
wird.

Ein System von Gleichungen mit n Variablen hat k
Freiheitsgrade, wenn es eine Menge von k Variablen gibt, die frei
gewahlt werden koénnen, wahrend die restlichen n — k Variablen
eindeutig bestimmt sind, sobald den k freien Variablen spezielle
Werte zugeordnet wurden.
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15.11 Differenzieren von Gleichungssystemen

5u+5v=2x—-3y
2u+44v =3x — 2y

Gleichungssystem mit zwei Gleichungen und vier Variablen
— zwei Freiheitsgrade

Wir kdnnen zwei Variablen frei wihlen, die restlichen zwei
Variablen sind dann eindeutig bestimmt.

Zum Beispiel kdnnen wir x und y frei wahlen;

u und v sind dann Funktionen von x und y.

Durch das Differenzieren des Gleichungssystems nach x und y
konnen wir die partiellen Ableitungen von u und v nach x und y
berechnen, ohne das Gleichungssystem zu |6sen.
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Endogene und exogene Variablen

Im vorangegangenen Beispiel sind x und y exogene Variablen, d.h.
Parameter die in das 6konomische Modell einflieBen und

es sind u und v endogene Variablen, d.h. GroBen, die vom
6konomischen Modell erklart werden.

Das 6konomische Modell hat die Form von strukturellen
Gleichungen:

f(u’ V’X7y) = O

g(u7 V7X7y) - O

Sei (ug, vp) eine Losung der beiden Gleichungen bei gegebenen
Parametern (xo, yo)-
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Implizite Definition und reduzierte Form

Das strukturelle Modell
f(u,v,x,y)=0

g(u,v,x,y)=0

definiert die Variablen u und v implizit als Funktionen der
Parameter x und y:

u=u(x,y)
v=v(xy)

Diese Gleichungen heiBen reduzierte Form des Modells.
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Zusammenfassung

> Totale Ableitung

» Implizites Differenzieren

» Homogenitat, konstante Skalenertrage
» Lineare Approximation

» Differentiale und Zuwéachse

» Komparative Statik mit Gleichungssystemen
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