Vorlesung zu Kapitel 14:1

Funktionen mehrerer
Variablen

Moodle Lehrbuch
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14.1 Funktionen von zwei Variablen

D(f.-,, F ous éfr-tic“\..
b eve lei(menge
)Z/ o x-r- Ebene
Sei D C R2.

Eine Funktion f von zwei Variablen x und y mit Definitionsbereich
D ist eine Regel, die eine genau spezifizierte Zahl

f(x,y) € R zu jedem Punkt (x,y) € D

festlegt.
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Beispiel: f(x,y) = 2x + x%y3
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f(x,y) = 2X—l—xzy3

Gebe die Werte von f fiir folgende Zahlenpaare an:
7y):(170) ..Cfff,'a') = 2.1 & 42‘03 . 2

a) (X 2z 4

b) (X7y):(o’1) ((034") s 2.0 +O -1 ,So

) (x,y)=(-2,3) ez = 202) + 2t 3 - ffq:-qt-fza- ;z:-q
=S - = o

d) (x,y) =(a+1,b)

2
.((a.m, () = 2(a+1) + (a44)z6
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Beispiel: Cobb-Douglas-Funktion

f(x,y) = Ax“y*
mit A, c,d > 0.

z="f(x,y)
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14.2 Partielle Ableitungen bei zwei Variablen

Sei f : D — R differenzierbar mit D C R2.

Falls z = f(x, y), dann ist
> % die Ableitung von f(x, y) nach x,
wenn y konstant gehalten wird.

g—; die Ableitung von f(x,y) nach y,
wenn x konstant gehalten wird.

Definition: [ .4

I (x, ] . f(xdx,y)—fF(x,

> ) = fixy) = im bt tle)

Of(x,y) f(x,y+dy)—f(x,y)

> To = hioy) = fim SRS
fs“"“)
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Beispiel f(x,y) = 2x + x?y?
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Partielle Ableitung nach x

f(x, y0) = 2x +x°y5
Betrachte die Variable y als konstanten Parameter: y = yp

V4

f(x,y0)

Steigung: f{(xo, yo)

, X
X0

fl(x.%0) = 2+ 2x5
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]C(x.os) - o2x v Xk

1]

' 2 2
‘sz’(-j) = X 34

2 x°

3



Cobb-Douglas-Funktion f(x,y) = Ax‘y?

mit A, c,d > 0.

f(x, yo)
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Cobb-Douglas-Funktion £ 5 fe

f(x,y)= Axcyd

mit A, c,d > 0.

Steigung: f{(x0, ¥0)
f(x, yo)

X

ff(X,Y) = %«015‘{‘ = c‘[’/4 xc- . bi

cox Akt b"( - %—‘ﬁfﬂs)
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14.3 Geometrische Darstellung

Koordinatensystem mit drei Dimensionen

(%0, Y0, 20)

Zgk-------m - - - ¢

{(x,y,2z) €R®: x,y,z >0} : ,nichtnegativer Oktant"
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Der Graph einer Funktion von zwei Variablen
Der Graph der Funktion f : D — R mit D C R%:

V4 ]
|
|
|
|

(%0, ¥ )0 |
|
! |
! I
| | |
| l
St o)
w0 D
il 5
X
X0

{(x,y,2) € R} .z= f(x,y), (x,y) € D}
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Isoquanten der Cobb-Douglas Produktionsfunktion

S
Ty fx.y) =2z \2224
54 ((X7))/):Z3 zZ=2z3
3 flx,y) =2z _
z ) z=2z
Z% fx,y) ==z z:z%
X X ¥

Eine Isoquante (, gleich Menge") gibt an, mit welchen
Inputkominationen (x,y) die Menge z produziert werden kann.

Isoquanten sind Projektionen der Hohenlinien von
Produktionsfunktionen auf die Ebene der Inputmengen.
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Indifferenzkurven fiir perfekte Komplemente

y
z |—ZZZ4
U(Xay):Z4 z=12
2 y U(va):Z3 > —
% u(x.y) = 2 ~ 2
£ u(x,y) = 21 Z=4a
X X

Eine Indifferenzkurve gibt an, welche Giiterbiindel (x, y) den
gleichen Nutzen generieren.

Indifferenzkurven sind Projektionen der Héhenlinien von
Nutzenfunktionen auf die Ebene der Giiterbiindel.

Modul 1 Methodische Grundlagen: Mathematik Kapitel 14, Lars Metzger, WS 2025/26, =x Kontakt 16 / 41


mailto:mathe.wiwi@tu-dortmund.de

Geometrische Interpretation der partiellen Ableitungen

s

227

22

L
s

22

Steigung von T: f/(a, b) Steigung von T fy(a, b)
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Der Gradient: Vektor der partiellen Ableitungen

Yo

f3(x0, ¥o0)

VE(x,y) = (f(x.y), f(x.y))

(x0, ¥0) + V£(x0, y0)

X0 fll(XO,)/O)
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Der Gradient einer Cobb-Douglas Funktion

f(x,y) = Axy9
1. partielle Ableitungen:
flixy)= 5 fx4)
flxy) = L ford
)
U’fl‘l‘l-; £ i

Lils s 4

Unff;r um

!Qu'c.‘le f‘ﬂs )C(A
et W

(f-%)-ﬁ'mﬁ
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Zweite partielle Ableitungen in zwei Variablen

Fiir jede der beiden Variablen x und y von f gibt es zwei partielle

Ableitungen zweiter Ordnung:

o (or\_ @,
ox \Ox ) — oxox 1

o (ory_ o,
ox \dy )  oyox %

9
dy

9
dy

(5)

(

of
dy

)

_ o,
T Oxdy 2
Py,
- 8_)/8_)/ - 22

Insgesamt gibt es also vier zweite partielle Ableitungen.
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Zweite Ableitungen von f(x,y) = 2x + x2y3

1. partielle Ableitungen:

8f(X,y) _ 3
O = 24 2xy

of (x,y) 2.2
dy 3x“y

2. partielle Ableitungen:

PFxy) _ g o*
e~ 8

2

TS~ G
OPf(x, >’
8}5)(;xy) - {sz
0*f(x, y)

oy~ X
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Zweite Ableitungen von f(x,y) = Ax¢y?
1. partielle Ableitungen:

of(x, _
(8Xy) = f(x,y)ex7t
of(x, _
gyy) = f(x,y)dy?
2. partielle Ableitungen:
PHY) _ [y coxteam O
(0x)?
82f(X7Y) _ ‘F(x‘%) C‘X‘f,o{“‘s"f
Ox0y .
Prlxy) _ Lo g ex
Oy Ox
Pf(x,y) _ _15,,‘%),0(5%4-0{)
(9y)?
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Hesse-Matrix an der Stelle (x, y)

Sei f : D — R mit D C R? zweimal partiell differenzierbar.
Dann heiBt

fixy) | Fb(x y))
f// X, — ( 11 9 p 12 9
Cor) = Biy)” Falxy)

die Hesse-Matrix von f an der Stelle (x,y) € D.

Die Ableitungen £, und fJ; nennen wir auch , Kreuzableitungen*

Wenn alle zweiten partiellen Ableitungen stetig sind, dann gilt

fla(x,y) = fi(x,y) fir alle (x,y) € D .
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Hessematrix der Cobb-Douglas Funktion

f(x,y) =
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14.4 Flachen: Eine Ebene im Raum

ax+by+cz=d

mit a,b,c,d € R mit nicht a=b=c=0festund x,y,z € R
variabel.

Alle Punkte (x, y, z), welche diese Gleichung erfiillen, liegen auf
einer Ebene.

Falls nicht a = b =0, dann definiert ax + by + c-0 = d die
Schnittgerade der Ebene mit der xy-Ebene.
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Okonomische Anwendung: Budget-Ebene

Seien x, y,z > 0 Mengen dreier Giiter und
seien px, py, Pz > 0 deren Preise.

Sei zusatzlich m > 0 das verfiigbare Einkommen.

Alle Punkte (x,y, z) welche die Gleichung VerfogCares
lvut‘ "(?.Y ____H...;—-'""_‘—"'--.\ % Ge('{
6::\{9({.;-!({, ((‘j,}) Px + X + Py Yy + pz-zZ=m

erfiillen, kosten genau m Geldeinheiten. Sie liegen in der
Budget-Ebene.

Alle Giiterbiindel, die man sich leisten kann, bilden die
Budget-Menge: oo de g (F"

{(y.2) ERS ipextpy y+pz-z<m}
7

K52 dicfon wicls negalis sein
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Grafische Darstellung der Budget-Ebene
y

(0.5:0)

1%, quete 2 0
3¢ = W
yfe * ':S"'s r C}Ii/

/
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X =
%
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Abstand zwischen zwei Punkten

{Euwwﬂfﬁ(h_)
Der'Abstand zwischen zwei Punkten (x,y,z) und (a, b, c) ist

d=1/(x—a)2+(y— b2 +(z—c]?

Eine Kugel mit Mittelpunkt (a, b, ¢) und Radius r ist definiert
durch
(x—a)P?+(y—b2+(z—c)?=r?
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14.5 Funktionen von n Variablen

Sei n € N und seien ay,...,an, b, A € R Konstanten.

Lineare Funktion in n Variablen (fiir b # 0, affin®):

F(x) = f(X1,..., %) = a1x1 +axxo +...+apx, + b

Cobb-Douglas Funktion in n Variablen:

f(X) = f(le s 7Xn) = AX181X232 .. .X;?"

mit x1,...,X, >0
Leontief Funktion in n Variablen:
f(X) = f(Xl, e ,Xn) = min {alxl, axxg, ..., a,,x,,}
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Mittelwerte

Gegeben sei eine Stichprobe x1,x2,...,x, € R mit n € N.

(a) arithmetisches Mittel: X4 := % (x; + X2 + ... 4+ X,)

n

(b) geometrisches Mittel: Xg := /Xx1X2 ... Xn

(fiir x1, x2,...,xp, > 0)

1

(c) harmonisches Mittel: xy == ————
)

(fiir x1, x2,...,xn, # 0)

Falls x1,x2,...,x, > 0, dann gilt allgemein:

XH < X < Xa
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14.8 Konkave und konvexe Funktionen

Sei f eine Funktion, definiert auf einer konvexen Menge D.

f ist konkav, wenn fiir alle a und b in D und fiir alle A in [0, 1] gilt:
Hollen €ngnug Wisclelejve
f(Aa+(1—X)b) > Af(a)+ (1 —N)f(b)

f ist konvex, wenn fiir alle a und b in D und fiir alle A in [0, 1] gilt:

f(Aa+ (1 — A)b) < Af(a) + (1 — A)f(b)

Falls D C R: Definition identisch zu Kapitel 8.

Falls D C R": a, b sind Vektoren. Die Idee der Definition bleibt
aber erhalten.

Modul 1 Methodische Grundlagen: Mathematik Kapitel 14, Lars Metzger, WS 2025/26, =x Kontakt 31/ 41


mailto:mathe.wiwi@tu-dortmund.de

2
S

L7
...

7>
L77
7

L7

72

%
L7

k’”'(;-“(Fi
a.

«)
f( )+ (f-'\)fz p
Affa oC AL

>>
'z,"
75
752
%
LT
%

7
L7

{77
77

S5
7
%
542
AL
-

s,

et
27

L7

L7

7%
0%

%
72
LSS

“
%
27
;l
55
...
..g!_

9%

\ e

"'
o
Ay
VoS,

27
2
5
25

720,

%

7

L7
[

20
17

":,,,

%
7
%
%
L0,
i
\ /X

75

,J"’z,
%,

%
I

S5

4,

L
knol’ Aaqte
Z-

Ao f (4—)0‘()
for

%)
f
(.) -l-(“'
DO £Af o]
(f/\a. F ( p e(e_l‘ |

I‘r'(f LT
for =

- 32 /41
= 2 ("') - f(oulff)(

{F ‘{11 (

=

11

kt
Konta
26, =
2025/,

WS

r,

Metzgel

s

itel 14, Lar:

atik Kapitel

: Mathem

ndlagen:

ische Gru

thodisc

|1 Me

Modu


mailto:mathe.wiwi@tu-dortmund.de

)

)

360,09

9 00 i,

"&“'C“"'«é;"ll’l // { 7,
7%7

X
[
(;M- 2 [)o) d:-f
f
(u.: -1 9,7 2 (o)

Modul 1 Methodische Grundlagen: Mathematik Kapitel 14, Lars Metzger, WS 2025/26, =1 Kontakt

33 /41


mailto:mathe.wiwi@tu-dortmund.de

Beispiel: f(x,y) = x> + y? — 2xy

[: = 2x -14

for2g o

R
RO
:#::’:‘:’#5:'.’""""%73"'%

z="f(x,y)
,((4', 1) r41+ 12- 2-1

= O
( (0,6) : S+ 02 _20

=

K ()
i i X
a0y

A & ‘4’ 94,9
AR
o

oA e
O SO RKR B S
SNCSaNRE s
PRANAK

A

X Ea +1 -2 0O
l/f l’"." "’"3( {t'u f'g {'ﬂlx“
vler ode, auf o O GI-f‘Pu
r [
(145 z e -ﬁ, =t

D f sclyal Uowvex
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z="f(x,y)

Beispiel: f(x,y) = x> + y? — 3xy

WO

. ~~ “Q A
NN T
AN one N A
O i "y
BARRN e 5 wich Leomves
........~.."’«eg§g?z "'0:‘0’ % _._97[;& wede
‘,'/"/'/ MDM[A:( Mocc!
Koy vex
fru w3
4 r
F 1’; =Z2>0
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Konvexitit /Konkavitat und 2. partielle Ableitungen

ber
In allen drei” Beispielen
> 2 2
X +y } s{fr.j ffw v(x
> x2+y? —xy

| 2 X2 —|—y2 — 2xy = scliva Worrex
(o loa o

> x?2 —|—y2 —3xy & welx Womslx o
gilt fi1 =15=2>0.
Es stellen jedoch nur die ersten zwei Beispiele streng konvexe
Funktionen dar.

Bei multivariaten Funktionen kommt es nicht nur auf die

Vorzeichen von flf’ an, sondern auf alle zweiten partiellen
Ableitungen.
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Sei f : D — R zweimal differenzierbar. Dann gilt:

f konvex <« 1, f) > 0 und A1 > fisfn

f streng konvex < f{1, 5 > 0 und f{1f5 > f56]

f konkav < f1,f3 < 0 und f1f3; > fiafy

f streng konkav < {1, f» < 0 und {165 > 5ty

Beachte, dass jede zweite partielle Ableitung von dem jeweiligen
Punkt (x,y) abhdngen kann. Die Ungleichungen miissen fiir jeweils
alle Punkte (x,y) € D gelten.

Falls in einem Punkt (x,y) gilt, dass {1y, < f{4f;7, dann ist die
Funktion weder konvex noch konkav.
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_p(x.‘& - Xt 4t - txy , t feste 244(

f
; -4 - -

‘F/r = 2x 4 ,Fz 2y - €x

‘(’M = 2 ’(14 = -‘6
£
) ?(n > o

! Vi

‘(41: -€ '[?,2.’ 2

E"' F??_ A'Z ,”

7
2.2 > (-8).(-¢) -
c=) 22 £ t < 2 = 1[:;4" _*.‘N-J km-vﬂ(

fq‘l’( = =2 oo éf 2 ) r:j} kalﬂlf..l(

Falls t<€ 2 ody £572 = FJ-" weder Vovetn ol lyuleg,



Beispiel f(x,y) = x?+y?> —t-xy

fll( ay) 2X—ty

f2,( a.y) - 2y—tX
fi(x,y) = 2 (xy) = —t
fZIII(X’Y) = —t leé(x,y) = 2

Es gilt {1, 5 > 0V
Zweite Ungleichung i), > f/5f)]:
2.2>(—t)-(~t) e 4>t |t <2

Die Funktion f ist also schwach konvex genau dann wenn |t| < 2.
Falls |t| < 2, so ist f streng konvex.
Falls |t| > 2, dann ist f weder konvex noch konkav.
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14.9 Okonomische Anwendung:
Cobb-Douglas Produktionsfunktion ¢, 2o e
;;'? Co = o<1
1, o = <1
Die Hesse-Matrix der Cobb-Douglas Produktionsfunktion

c <A

f(x,y) = Ax°y? mit c,d > 0

haben wir fiir x,y > 0 bereits berechnet:

Lo seo !
CZi-c
f”(XJ)Z"(XJ)( cd _§iv_d>
Y
(o("éo(?

Unter welchen Bedingungen ist die
Cobb-Douglas-Produktionsfunktion (streng) konkav fiir x,y > 07

< 4-¢

ﬁ: {o (Zo) _p-!('ls -";—: 50 (<e>
1

<= _H.E.(‘f_c) £o I" (-e) 1-€ 20 = 72

<o
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14.9 Okonomische Anwendung:
Leontief Produktionsfunktion
qlxu) = C-X uc..&u
h e, 5) 0(5
o ulen

Die Leontief Produktionsfunktion ist deflmert durch:

f(x,y) = mln{cx dy} mit ¢,d >0

Problem: Entlang der Gerade cx = dy hat die Funktion eine Falte;
sie ist dort nicht differenzierbar.

( ) cx falls cx < dyp
X, Y0) =
Y dyo fallscx>dyy o x>

("l_}\

Ist diese Produktionsfunktion (streng) konkav?

°l§k.
x

(15}' p(‘_( rf{u-'mu.... 2Ee ey (o 1 learer FU“{‘-//‘-D 1P Lol ﬂdn»«,_/

f:g 2u {-\JS lonlea
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Zusammenfassung

» Funktionen mit zwei und mehr Variablen

» Geometrische Darstellung:
Hohenlinien als Isoquanten & Indifferenzkurven

» Ebenen und Abstand

> Partielle erste und zweite Ableitungen:
Gradient und Hesse-Matrix

> Konvexe Mengen

» Konkave und konvexe Funktionen
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