Vorlesung zu Kapitel 09:1

Optimierung

Moodle

Lehrbuch

¹Aus "Mathematik für Wirtschaftswissenschaftler" von Sydsæter, Hammond, Strøm und Carvajal, 6. Auflage

- 9.1 Extremstellen
- 9.2 Einfache Tests auf Extremstellen
- 9.3 Ökonomische Beispiele
- 9.4 Der Extremwertsatz
- 9.5 Weiteres ökonomisches Beispiel
- 9.6 Lokale Extremstellen

9.1 Extremstellen

Sei f eine Funktion. Dann ist

ightharpoonup c eine **Maximalstelle** für f und f(c) ist der **Maximumwert**, wenn

$$f(x) \le f(c)$$
 für alle x

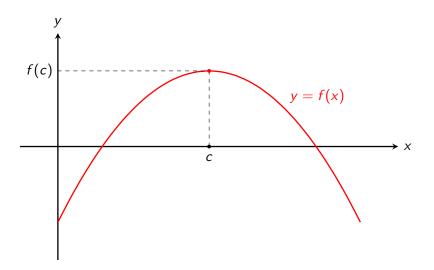
▶ d eine **Minimalstelle** für f und f(d) ist der **Minimumwert**, wenn

$$f(x) \ge f(d)$$
 für alle x

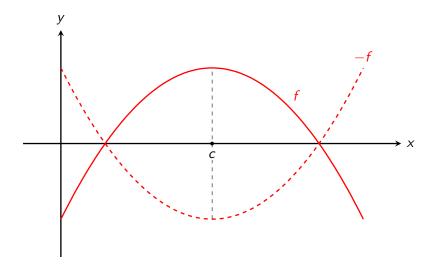
Sind die Ungleichungen strikt für alle $x \neq c$ bzw. $x \neq d$, so heißen c und d strikte Maximal- und Minimalstelle.

Die kollektive Bezeichnung lautet Extremstelle.

Maximalstelle c, Maximalwert f(c)



Maximum von f = Minimum von -f



Bedingungen für innere Extrempunkte

Sei $f:(a,b)\to\mathbb{R}$ differenzierbar und sei $f'(x_0)\neq 0$ für $x_0\in (a,b)$.

Behauptung: x_0 kann **keine** Maximumstelle von f sein!

Notwendige Bedingung erster Ordnung

Sei $f:(a,b)\to\mathbb{R}$ differenzierbar.

Falls $f'(x_0) \neq 0$ für $x_0 \in (a, b)$:

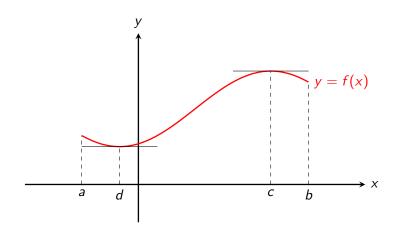
- \triangleright x_0 kann keine Maximumstelle von f sein.
- \triangleright x_0 kann keine Minimumstelle von f sein. (Begründung analog)

Damit $x_0 \in (a, b)$ eine Extremstelle für f in (a, b) ist, ist es eine **notwendige Bedingung**, dass die erste Ableitung von f an der Stelle x_0 gleich null ist:

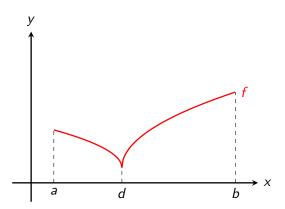
$$f'(x_0) = 0$$
.

Wir nennen Stellen x_0 mit $f'(x_0) = 0$ auch **stationäre** oder **kritische** Stellen.

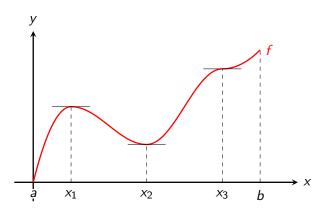
Zwei stationäre Stellen



Keine stationäre Stelle

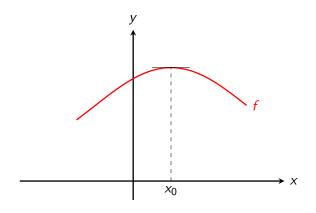


Keine inneren Extrema



Wenn x stationär ist, können wir nicht schlussfolgern, dass x eine Extremstelle von f ist!

9.2 Einfache Tests auf eine Maximumstelle

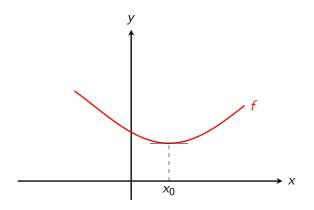


$$f'(x) > 0$$
 für alle $x < x_0$

$$f'(x) \ge 0$$
 für alle $x \le x_0$ $f'(x) \le 0$ für alle $x \ge x_0$

Also: $f'(x)(x-x_0) \le 0$ für alle x

9.2 Einfache Tests auf eine Minimumstelle



$$f'(x) < 0$$
 für alle $x < x_0$

$$f'(x) \le 0$$
 für alle $x \le x_0$ $f'(x) \ge 0$ für alle $x \ge x_0$

Also: $f'(x)(x-x_0) \ge 0$ für alle x

9.2 Einfache Tests auf Extremstellen

Test der ersten Ableitung auf Extrema

Sei f differenzierbar.

- (i) Falls $f'(x)(x x_0) \le 0$ für alle x: x_0 ist eine Maximumstelle für f.
- (ii) Falls $f'(x)(x x_0) \ge 0$ für alle x: x_0 ist eine Minimumstelle für f.

Falls die Ungleichung strikt ist für alle $x \neq x_0$, handelt es sich um eine strikte Extremstelle.

Extrema von konkaven und konvexen Funktionen

Sei x_0 eine stationäre Stelle für f.

- (i) Wenn f konkav ist, dann ist x_0 eine Maximumstelle für f.
- (ii) Wenn f konvex ist, dann ist x_0 eine Minimumstelle für f.

Extrema von strikt konkaven und strikt konvexen Funktionen

- (i) Wenn f strikt konkav ist, dann ist eine Maximumstelle für f eindeutig.
- (ii) Wenn f strikt konvex ist, dann ist eine Minimumstelle für f eindeutig.

Gewinnmaximierung im perfekten Wettbewerb

Marktpreise:

- $w = \frac{1}{2}$ für das Input (Menge $x \ge 0$)
- ightharpoonup p = 10 für das Output (Menge $y \ge 0$)

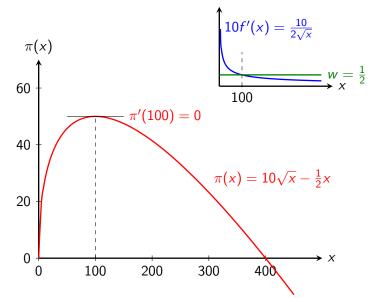
Produktionsfunktion:

$$y = f(x) = \sqrt{x}$$

Gewinn als Funktion der Inputmenge x:

$$\pi(x) = p \cdot y - w \cdot x = 10\sqrt{x} - \frac{1}{2}x$$

Beispiel: $f(x) = \sqrt{x}$, p = 10, $w = \frac{1}{2}$



Monopolist mit konstanten Grenzkosten

- ► inverse Nachfragefunktion *P*
 - zweimal differenzierbar
 - streng monoton fallend
 - streng konkav
- ▶ $y \ge 0$: Menge des produzierten Outputs
- ► Kostenfunktion $C(y) = c \cdot y$
- Gewinn als Funktion der Outputmenge y: $\pi(y) = P(y) \cdot y - c \cdot y$

Annahme: $y^* > 0$ Maximalstelle von π

Wie lautet die notwendige Bedingung erster Ordnung?

Wie reagiert die optimale Menge y^* auf eine Veränderung von c?

Wie reagiert das Gewinnmaximum auf eine Veränderung von c?

Belindas optimale Konsumentscheidung

Belinda konsumiert Baguette (Menge $x \ge 0$) und Rotwein ($y \ge 0$).

Ihr Nutzen aus dem Güterbündel (x, y) beträgt $u(x, y) = \frac{1}{4}x^2y$.

Da die Summe aus Baguette und Rotwein 3 sein muss (x + y = 3), gilt y = 3 - x.

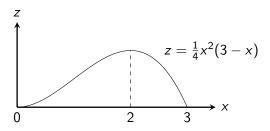
Ihr Nutzen aus dem Güterbündel (x, 3 - x) beträgt also:

$$u(x) = \frac{1}{4}x^2(3-x)$$

Der Definitionsbereich lautet [0,3] (es muss $0 \le x \le 3$ gelten).

Welche Mengen x^* und y^* sind optimal für Belinda?

Belindas optimale Konsumentscheidung



Celestes optimale Konsumentscheidung

Celeste konsumiert Baguette (Menge $x \ge 0$) und Rotwein ($y \ge 0$).

Ihr Nutzen aus dem Güterbündel (x, y) beträgt $u(x, y) = \min \left\{ \frac{1}{4}x^2, y \right\}$.

Da die Summe aus Baguette und Rotwein 3 sein muss (x + y = 3), gilt y = 3 - x.

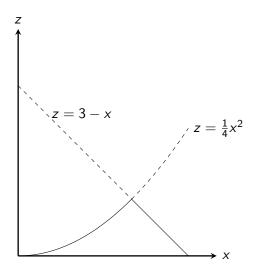
Ihr Nutzen aus dem Güterbündel (x, 3 - x) beträgt also:

$$u(x) = \min\left\{\frac{1}{4}x^2, 3 - x\right\}$$

Der Definitionsbereich lautet [0,3] (es muss $0 \le x \le 3$ gelten).

Welche Mengen x^* und y^* sind optimal für Celeste?

Celestes optimale Konsumentscheidung



Doras optimale Konsumentscheidung

Dora konsumiert Baguette (Menge $x \ge 0$) und Rotwein ($y \ge 0$).

Ihr Nutzen aus dem Güterbündel (x, y) beträgt $u(x, y) = \frac{1}{4}x + y$.

Da die Summe aus Baguette und Rotwein 3 sein muss (x + y = 3), gilt y = 3 - x.

Ihr Nutzen aus dem Güterbündel (x, 3 - x) beträgt also:

$$u(x) = \frac{1}{4}x + 3 - x$$

Der Definitionsbereich lautet [0, 3] (es muss $0 \le x \le 3$ gelten).

Welche Mengen x^* und y^* sind optimal für Dora?

9.4 Der Extremwertsatz

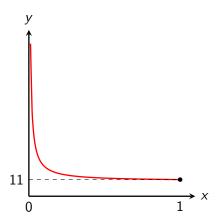
Es sei angenommen, dass f eine **stetige** Funktion auf einem **abgeschlossenen** und **beschränkten** Intervall $[a, b] \subset \mathbb{R}$ ist.

Dann existiert eine Stelle $d \in [a, b]$, an der f ein Minimum hat und eine Stelle $c \in [a, b]$, an der f ein Maximum hat, d.h. es gilt:

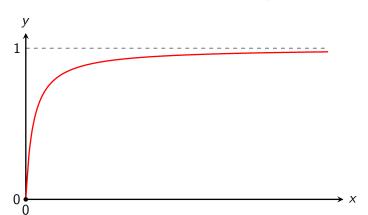
$$f(d) \le f(x) \le f(c) \ \forall \ x \in [a, b]$$

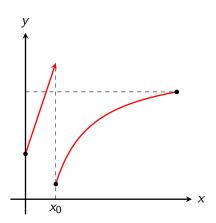
Sind stetig, abgeschlossen oder beschränkt nicht erfüllt, können Extremstellen existieren, müssen es aber nicht.

$$f:(0,1]\to \mathbb{R} \ {
m mit} \ f(x)=rac{1}{x}+10$$

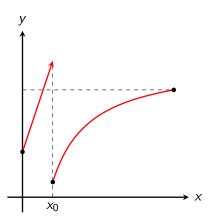


$$f:[0,\infty)\to\mathbb{R} \text{ mit } f(x)=rac{x}{x+1}$$





$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$$



Wie nach Extremstellen gesucht wird

Sei $f: D \to \mathbb{R}$, wobei der Definitionsbereich $D \subseteq \mathbb{R}$ ein Intervall sei.

Jede Extremstelle des Intervalls D gehört zu einer der drei verschiedenen Mengen:

- (a) Innere Punkte von D, in denen f'(x) = 0 ist;
- (b) Endpunkte von D, falls sie zu D gehören; und
- (c) Innere Punkte von D, in denen f' nicht existiert.

Punkte, die zu (a), (b) oder (c) gehören, heißen Kandidaten für Extremstellen.

Auffinden der Extrema von differenzierbaren Funktionen

Sei $f:[a,b] \to \mathbb{R}$ differenzierbar.

Um die Extremwerte von f zu finden, gehe wie folgt vor:

- 1. Bestimme alle stationären Stellen von f in (a, b), d.h. bestimme alle $x \in (a, b)$, die die Gleichung f'(x) = 0 erfüllen.
- 2. Berechne den Funktionswert von *f* in den Endpunkten *a* und *b* des Intervalls und auch an allen stationären Stellen.
- 3. Der größte der in 1. und 2. gefundenen Funktionswerte ist der Maximalwert und der kleinste Funktionswert ist der Minimalwert von f in [a, b].

 $f:[0,3]\to\mathbb{R} \text{ mit } f(x)=3x^2-6x+5$

9.5 Weiteres ökonomisches Beispiel

Monopolfirma mit Kapazitätsgrenze

Eine Monopolfirma sehe sich der inversen Nachfragefunktion

$$P(y) = \max\{100 - y, 0\}$$

bei gegebener Outputmenge $y \ge 0$ gegenüber.

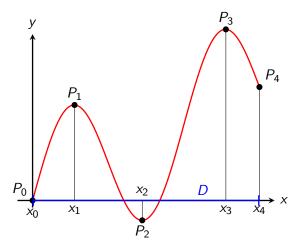
Sie habe die Kostenfunktion $C(y) = 20 \cdot y$.

Außerdem sei die Kapazitätsgrenze 0 < K < 100 gegeben.

Der Gewinn der Firma beträgt

$$\pi(y) = (100 - y) \cdot y - 20 \cdot y \text{ für } 0 \le y \le K$$

9.6 Lokale Extremstellen



Lokales Maximum

Sei f eine Funktion mit Definitionsbereich [a, b].

Ein **innerer Punkt** $x_0 \in (a, b)$ ist ein lokales Maximum von f, falls ein $\epsilon > 0$ existiert, sodass $a < x_0 - \epsilon$ und $x_0 + \epsilon < b$ und

$$f(x) \le f(x_0)$$
 für alle $x \in (x_0 - \epsilon, x_0 + \epsilon)$

Der **Randpunkt** $x_0 = a$ ist ein lokales Maximum von f, falls ein $\epsilon > 0$ existiert, sodass $a + \epsilon < b$ und

$$f(x) \le f(x_0)$$
 für alle $x \in [a, a + \epsilon)$

Der **Randpunkt** $x_0 = b$ ist ein lokales Maximum von f, falls ein $\epsilon > 0$ existiert, sodass $a < b - \epsilon$ und

$$f(x) \le f(x_0)$$
 für alle $x \in (b - \epsilon, b]$

Lokale Extrema

Ein **lokales Minimum** x_0 ist analog definiert:

Es muss jeweils $f(x) \ge f(x_0)$ gelten.

Kollektive Namen für lokale Maxima bzw. lokale Minima lauten lokale Extremstellen bzw. lokale Extrema

Auch für lokale Extrema gilt:

In einer lokalen Extremstelle im Innern des Definitionsbereiches einer differenzierbaren Funktion muss die Ableitung Null sein.

Der Test der ersten Ableitung

Sei f differenzierbar mit Definitionsbereich D.

Nehme an, dass x_0 ein innerer Punkt von D ist und eine stationäre Stelle von f.

- (i) Falls $f'(x)(x x_0) \le 0$ auf $(x_0 \epsilon, x_0 + \epsilon)$, dann ist x_0 eine lokale Maximumstelle für f.
- (ii) Falls $f'(x)(x-x_0) \ge 0$ auf $(x_0 \epsilon, x_0 + \epsilon)$, dann ist x_0 eine lokale Minimumstelle für f.
- (iii) Falls f'(x) > 0 auf $(x_0 \epsilon, x_0 + \epsilon)$ (außer für $x = x_0$) oder falls f'(x) < 0 auf $(x_0 \epsilon, x_0 + \epsilon)$ (außer für $x = x_0$), dann ist x_0 keine lokale Extremstelle für f.

Der Test der zweiten Ableitung

Sei f zweimal zweimal differenzierbar.

Nehme an, dass x_0 eine stationäre Stelle von f ist.

- (i) Wenn $f''(x_0) < 0$, dann ist x_0 eine strikte lokale Maximumstelle.
- (ii) Wenn $f''(x_0) > 0$, dann ist x_0 eine strikte lokale Minimumstelle.
- (iii) Wenn $f''(x_0) = 0$, dann bleibt der Charakter von x_0 unbestimmt.

Der Umkehrschluss dieser Aussagen liefert die notwendigen Bedingungen zweiter Ordnung.

Notwendige Bedingungen zweiter Ordnung

Sei f zweimal differenzierbar.

Dann gilt:

 x_0 ist eine lokale Maximumstelle für $f \Rightarrow f''(x_0) \le 0$

 x_0 ist eine lokale Minimumstelle für $f \Rightarrow f''(x_0) \ge 0$

 $f: \mathbb{R} \to \mathbb{R} \text{ mit } f(x) = \frac{1}{9}x^3 - \frac{1}{6}x^2 - \frac{2}{3}x + 1$

Zusammenfassung

- Extremstellen: Maximal- & Minimalstellen
- Notwendige Bedingung erster Ordnung für innere Extremstellen
- Extremwertsatz
- Lokale Extremstellen
- ► Notwendige Bedingung zweiter Ordnung