Konkave und konvexe Funktionen

Moodle

Lehrbuch

¹Aus "Mathematik für Wirtschaftswissenschaftler" von Sydsæter, Hammond, Strøm und Carvaial, 6. Auflage

- 8.1 Intuition
- 8.2 Definitionen
- 8.3 Allgemeine Eigenschaften
- 8.4 Tests der ersten Ableitung
- 8.5 Tests der zweiten Ableitung
- 8.6 Wendestellen

8.1 Intuition: Wäscheleine am Höhleneingang

8.1 Intuition: Seilbrücke über Bach

8.2 Definition Konvexkombination

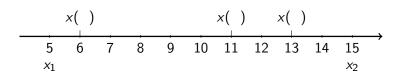
Für zwei beliebige Zahlen x_1 und x_2 ist für λ mit $0 \le \lambda \le 1$

$$x(\lambda) = \lambda \cdot x_1 + (1 - \lambda) \cdot x_2$$

eine **Konvexkombination** von x_1 und x_2 .

Beispiel:

$$x(\lambda) = \lambda \cdot 5 + (1 - \lambda) \cdot 15$$

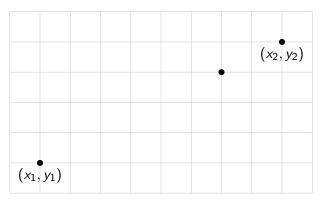


Konvexkombinationen von Punkten

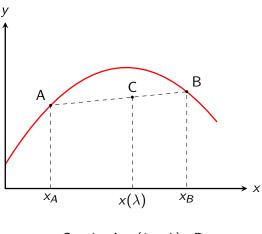
Für zwei beliebige Punkte (x_1,y_1) und (x_2,y_2) ist für λ mit $0 \le \lambda \le 1$

$$(x(\lambda),y(\lambda)) = \lambda \cdot (x_1,y_1) + (1-\lambda) \cdot (x_2,y_2)$$

eine Konvexkombinationen dieser beiden Punkte.



Mit der Konvexkombination von Punkten können wir nun die "Wäscheleine" als Formel darstellen:



$$C = \lambda \cdot A + (1 - \lambda) \cdot B$$

8.2 Definition konkave Funktion

Eine Funktion f heißt **konkav** auf dem Intervall [a, b], falls

$$f(\lambda \cdot a + (1 - \lambda) \cdot b) \ge \lambda \cdot f(a) + (1 - \lambda) \cdot f(b)$$

für alle Zahlen $\lambda \in [0,1]$.

Wenn die Ungleichung für $0 < \lambda < 1$ strikt ist, dann ist f **strikt konkav**.

8.2 Definition konvexe Funktion

Eine Funktion f heißt **konvex** auf dem Intervall [a, b], falls

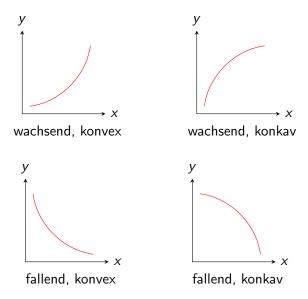
$$f(\lambda \cdot a + (1 - \lambda) \cdot b) \le \lambda \cdot f(a) + (1 - \lambda) \cdot f(b)$$

für alle Zahlen $\lambda \in [0,1]$.

Wenn die Ungleichung für $0 < \lambda < 1$ strikt ist, dann ist f **strikt konvex**.

Anmerkung: Falls f konvex ist, so ist -f konkav.

Monotonie und Krümmung



8.3 Allgemeine Eigenschaften

Wir präsentieren in diesem Abschnitt allgemeine Eigenschaften konkaver Funktionen. Mit der Regel

f konkav $\Leftrightarrow -f$ konvex

Lassen sich diese Eigenschaften leicht für konvexe Funktionen anwenden.

Summen

Sind die Funktionen f und g konkav, so ist f+g ebenfalls konkav. Ist hierbei f oder g strikt konkav, so ist f+g strikt konkav.

Beispiel:

Ist $f(x) = x^2 - 2x + 2$ konkav, konvex, oder weder noch?

Minima und Maxima

Sind die Funktionen f und g konkav, so ist $\min\{f,g\}$ ebenfalls konkav.

Dies ist äquivalent zu:

Sind die Funktionen f und g konvex, so ist $\max\{f,g\}$ ebenfalls konvex.

Übung:

$$f(x) = 2 - x$$
 und sei $g(x) = -2 + x$.

Ist $\max\{f,g\}$ konkav, konvex oder weder noch?

Ist h(x) = |x - 2| konkav, konvex, oder weder noch?

Verkettung von Funktionen

Sei f konkav und sei g monoton wachsend und konkav.

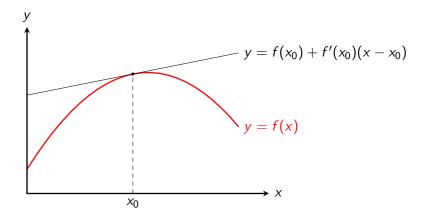
Dann ist $g \circ f$ ebenfalls konkav.

Inverse von Funktionen

Sei f streng monoton wachsend und konkav.

Dann ist $g = f^{-1}$ streng monoton wachsend und konvex.

8.4 Tests der ersten Ableitung



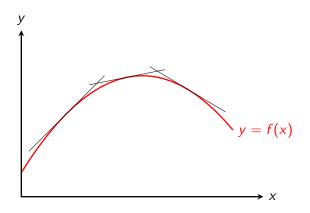
Charakterisierung von konkaven und konvexen Funktionen

Die Funktion f sei differenzierbar.

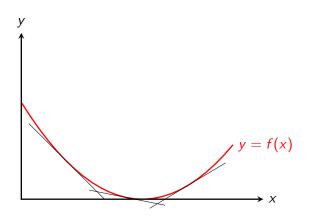
ightharpoonup f ist konkav genau dann, wenn für alle x_0 und x gilt:

$$f(x) \le f(x_0) + f'(x_0)(x - x_0)$$

f konkav: Die Steigung der Tangente fällt in x



f konvex: Die Steigung der Tangente wächst in x



8.5 Tests der zweiten Ableitung

Sei f zweimal differenzierbar.

$$f$$
 ist **konkav** $\Leftrightarrow f''(x) \le 0$ für alle x $\Leftrightarrow f'$ ist monoton fallend

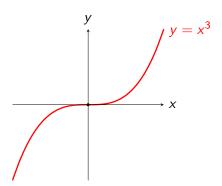
$$f$$
 ist **konvex** \Leftrightarrow $f''(x) \ge 0$ für alle x \Leftrightarrow f' ist monoton wachsend

8.6 Wendestellen

Sei f zweifach differenzierbar.

Die Stelle x_0 heißt **Wendestelle** für f, falls f'' in x_0 das Vorzeichen wechselt.

Der Punkt $P = (x_0, f(x_0))$ heißt **Wendepunkt** des Graphen von f.



Zusammenfassung

- ► Konkavität / Konvexität
- ► Summen und Minima / Maxima
- Verkettung und Inverse
- Tests der ersten Ableitung
- ► Tests der zweiten Ableitung
- Wendestellen und Wendepunkte