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Funktionen mehrerer
Variablen
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Diese Aufgaben bearbeiten wir in diesen Ubungen:

14.1 Funktionen von zwei Variablen
Aufgabe 14.1.4 von Seite 650
Aufgabe 14.1.6 von Seite 650

14.2 Partielle Ableitungen bei zwei Variablen
Aufgabe 14.2.4 von Seite 656
Aufgabe 14.2.5 von Seite 656

14.3 Geometrische Darstellung
Aufgabe 14.3.5 von Seite 664
Aufgabe 14.3.8 von Seite 665
Aufgabe zu Hohenlinien

14.8 Konkave und konvexe Funktionen
Aufgabe 14.8.2 von Seite 694
Aufgabe zu perfekten Substituten
Aufgabe zu einer quasilinearen Nutzenfunktion
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Aufgabe 14.1.4 von Seite 650

Gegeben sei f : R? — R mit f(x,y) = x% +2xy +y2. « (x+ ‘3)2
a) Bestimme f(—1,2), f(a,a) und f(a+ h, b) — f(a, b).

b) Zeige, dass f(2x,2y) = 22f(x,y) und
dass f(tx, ty) = t>f(x,y) fiir alle t.
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Aufgabe 14.1.6 von Seite 650

Untersuche die Definitionsbereiche der durch die folgenden Formeln
gegebenen Funktionen und zeichne diese dann in der xy-Ebene.
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Aufgabe 14.2.4 von Seite 656

Bestimme alle partiellen Ableitungen erster und zweiter Ordnung
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Aufgabe 14.2.5 von Seite 656

Bestimme alle partiellen Ableitungen erster und zweiter Ordnung
fiir jede der folgenden Funktionen:

z=x%4e%

)
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)
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Aufgabe 14.3.5 von Seite 664

Zeichne fiir die folgenden Funktionen eine Reihe von Héhenlinien
in ein x-y-Diagramm:
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Aufgabe 14.3.8 von Seite 665

Nehme an, dass F(x,y) eine Funktion ist, von der wir nur wissen,
dass

i) F(0,0)=0
i) Fi(x,y) > 2 fir alle (x, y)
i) F(x,y) < 1 fiir alle (x,y)

Was kann iiber die relativen GroBen von F(0,0), F(1,0), F(2,0),
F(0,1) und F(1,1) gesagt werden?

Schreibe alle Ungleichungen auf, die zwischen diesen Zahlen gelten
mussen.
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Aufgabe zu Hohenlinien XS -
Es seien die Nutzenfunktionen v und v durch

oz

u(x,y) =xiys -0 Ts

und
v(x,y) =In(x) + 2In(y)

gegeben, wobei x,y > 0.

Begriinde, warum diese beiden Funktionen das gleiche System von
Hohenlinien haben: Wenn zwei Paare (xg, yo) und (x1, y1) auf der
gleichen Hohenlinie von u liegen, dann miissen sie auch auf der
gleichen Hohenlinie von v liegen (und umgekehrt).

Im Allgemeinen gilt, falls g : R — R streng monoton steigend,
dann haben v : R? — R und v mit v(x,y) = g(u(x, y)) die
gleichen Hohenlinien.
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Aufgabe 14.8.2 von Seite 694

Fiir welche Werte der Konstante a ist die folgende Funktion
konkav / konvex?

f(x,y) = —6x% + (2a+4)xy — y? + 4ay
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Aufgabe zu perfekten Substituten

Ein Nutzenfunktion fiir perfekte Substitute laute
ulx,y)=a-x+b-y
mit a, b > 0.

Ist die Nutzenfunktion konkav oder konvex?

/ /
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" " 1] 7!
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Aufgabe zu einer quasilinearen Nutzenfunktion

Eine quasilineare Nutzenfunktion laute
ulx,y) =v(x)+b-y
mit v/ > 0,v” < 0 und b > 0.

Ist die Nutzenfunktion konkav oder konvex?
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