Anwendungen der Differentialrechnung

Lehrbuch

¹Aus "Mathematik für Wirtschaftswissenschaftler" von Sydsæter, Hammond, Strøm und Carvajal, 6. Auflage

Diese Aufgaben bearbeiten wir in dieser Übung:

7.7 Elastizitäten

Aufgabe 7.7.1 von Seite 317 Aufgabe 7.7.4 von Seite 317 Aufgabe 7.7.9 von Seite 318

7.8 Stetigkeit

Aufgabe 7.8.2 auf Seite 325 Aufgabe 7.8.5 auf Seite 325

7.12 Regel von L'Hôpital

Aufgabe 7.12.3 auf Seite 348

Aufgabe 7.7.1 von Seite 317

$$E(x f(x)) = f'(x) \cdot \frac{x}{f(x)}$$

Bestimme die Elastizitäten der durch die folgenden Formeln

a)
$$3x^{-3}$$
 $\sim b E/ = -3$

$$\begin{array}{c} \text{b)} -100x^{100} \\ \hline \text{c)} \sqrt{x} = x^{\frac{1}{2}} \end{array}$$

$$\begin{array}{c} \text{(c)} \sqrt{x} = x^2 \\ \text{(d)} A/x\sqrt{x} \end{array}$$

c)
$$f(x) = x^{\frac{1}{2}}$$
 $f(x) = \sqrt{x'}$ $f'(x) = \frac{1}{2\sqrt{x'}}$

$$f(x) = x^{\frac{1}{2}} \qquad f(x) = \sqrt{x'}$$

$$f'(x) = \frac{1}{2}x^{\frac{1}{2}} \qquad f'(x) = \frac{1}{2\sqrt{x'}}$$

$$El_{x}f(x) = \frac{1}{2}x^{\frac{1}{2}} \cdot \frac{x}{x'^{\frac{1}{2}}}$$

$$= \frac{1}{2}\frac{x^{\frac{1}{2}+4}}{x^{\frac{1}{2}+4}} = \frac{1}{2}\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} = \frac{1}{2}$$

= = = = = = =

$$\frac{f(101) - f(100)}{f(100)} = \frac{1010 - 100}{100} = \frac{10,049 - 10}{10}$$

$$= \frac{0.043}{10} = 0.0043 \approx 0.005$$

$$= 0.5\%$$

$$1\% - E. holong von X: X=100 ~D X=101$$

$$\frac{f'(x)}{g'(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^{2}}$$

$$\frac{f'(x)}{g'(x)} = A \cdot \frac{1}{g(x)^{2}}$$

$$\frac{f'(x)}{g'(x)} = A \cdot \frac{3}{2} \sqrt{x}$$

Quotienter regel

$$= \frac{3}{2}\sqrt{\chi^2}$$

$$= -A\frac{3}{2}\frac{1}{\chi^2\sqrt{\chi}}$$

$$= -A \stackrel{?}{=} \frac{1}{x^2 \sqrt{x}} \cdot \frac{x}{x^2 \sqrt{x^2}}$$

$$El(\alpha) = -A \frac{3}{2} \frac{1}{x^2 \sqrt{x}} \cdot \frac{x}{A/x \sqrt{x}}$$

$$= -\frac{3}{3} \frac{1}{12\pi} \cdot \cancel{\cancel{x}} \cdot \cancel{\cancel{x}} = -\frac{3}{3}$$

 $= -\frac{3}{2} \frac{1}{x^2 \sqrt{x}} \cdot \stackrel{x^2}{\cancel{x} \cdot \cancel{x}} \sqrt{\cancel{x}} = -\frac{3}{2}$

$$\frac{X}{1/x\sqrt{X'}} = X : \frac{1}{x \cdot \sqrt{X}} = X \cdot X \cdot \sqrt{X'}$$

$$\frac{m}{\alpha/\delta} = m \cdot \frac{\alpha}{\delta} = m \cdot \frac{\delta}{\alpha}$$

$$= A \left(x^{1} \cdot x^{\frac{1}{2}} \right)^{-1} = A \left(x^{1 + \frac{1}{2}} \right)^{-1}$$

$$= A \left(x^{\frac{3}{2}} \right)^{-1} = A x^{\frac{3}{2} \cdot (-4)} = A x^{-\frac{3}{2}}$$

 $\frac{A}{X\sqrt{X'}} = A \cdot \frac{1}{X\sqrt{X'}} = A \left(X \cdot \sqrt{X'}\right)^{-1}$

N E(4) = - 3

Aufgabe 7.7.4 von Seite 317

$$\left(e^{x} \right)' = e^{x}$$

$$\left(\ln \left(x \right) \right)' = \frac{1}{x}$$

Verwende die Definition der Elastizität um diese für folgende Funktionen zu bestimmen, wobei *a* und *p* Konstanten sind:

a)
$$f(x) = e^{ax}$$

$$f'(x) = a e^{ax}$$

$$f'(x) = a$$

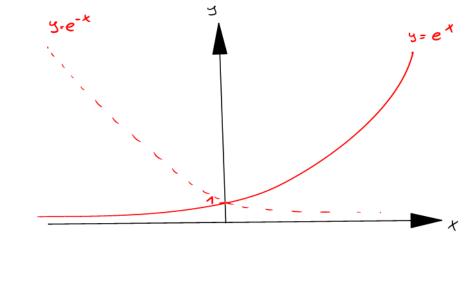
$$h(x) = \underbrace{x^{p} \cdot e^{ax}}_{f(x)} \underbrace{x^{(x)}}_{g(x)} \underbrace{x^{(x)} \cdot g(x) + f(x) \cdot g(x)}_{g(x)}$$

$$= P x^{p-1} \cdot e^{ax} + x^{p} \cdot a e^{ax}$$

$$= \left(P x^{p-1} + x^{p} \cdot a\right) \underbrace{x^{p-1} \cdot ax}_{x^{p} \cdot e^{ax}}$$

$$= \left(P x^{p-1} + x^{p} \cdot a\right) \underbrace{x^{p} \cdot ax}_{x^{p} \cdot e^{ax}}$$

$$= \left(P + x \cdot a\right) \underbrace{x^{p} \cdot ax}_{x^{p} \cdot e^{ax}}$$



$$K'(x) = \chi^{p} \cdot Cn(x)$$

$$K'(x) = p x^{p-1} \cdot ln(x) + \chi^{p} \cdot \frac{1}{x}$$

$$K'(x) \cdot \frac{x}{K'(x)} = \left(p \times \frac{p-1}{x} \cdot ln(x) + x^{p} \cdot \frac{1}{x}\right) \cdot \frac{x}{x^{p} \cdot ln(x)}$$

$$= \left(P \cdot \ln \left(t \right) + 1 \right) \frac{t^{p}}{t^{p} \cdot \ln \left(t \right)}$$

$$= P + \frac{1}{\ln \left(t \right)}$$

= (p. lm(x) + 1) xr. 1, xr

Aufgabe 7.7.9 von Seite 318

Es seien f und g differenzierbare Funktionen von x mit positiven Funktionswerten.

Zeige, dass:

- b) Die Elastizität des Produkts $f \cdot g$ ist die Summe der Elastizitäten von f und g. siehe Vollesung 2 (letzte Minuten)
- c) Die Elastizität des Quotienten von $\frac{f}{g}$ ist die Differenz der Elastizitäten von f und g.
- f) Die Elastizität der Verkettung $f \circ g$ ist das Produkt der Elastizitäten von f und g.

$$= \frac{f'(x) \cdot g(x) \cdot x - f(x) \cdot g'(x)}{g(x) \cdot x - f(x) \cdot g'(x)}$$

$$= \frac{f'(x) \cdot g(x) \cdot x - f(x) \cdot g'(x)}{g(x) \cdot f(x)}$$

 $\left(\frac{3(x)}{f(x)}\right)' \cdot \frac{\chi}{\chi} = \left(\frac{3(x)}{g(x)}\right)' \cdot \chi \cdot \frac{3(x)}{f(x)}$

$$= \frac{f'(x)}{g(x)} \frac{f(x)}{f(x)} - \frac{f(x)}{g(x)} \frac{g'(x) \cdot f(x)}{g(x)}$$

$$= f'(x) \cdot \frac{\chi}{f(x)} - g'(x) \cdot \frac{\chi}{g(x)}$$

$$= \frac{m \cdot \alpha}{n} \cdot \alpha = \frac{m \cdot \alpha}{n}$$

$$\left(f \circ g\right)' = \left(f\left(g\left(x\right)\right)\right)' = f'\left(g\left(x\right)\right) \cdot g'\left(x\right)$$

$$El_{x} f(s(n)) = \left(f(s(n)) \right)^{1} \cdot \frac{x}{f(s(n))}$$

 $= f'(g(x)) \cdot \frac{g(x)}{f(g(x))} \cdot g'(x) \cdot \frac{x}{g(x)} = E(xf(x)) \cdot E(xg(x))$

Aufgabe 7.8.2 auf Seite 325

Seien f und g für alle $x \in \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x^2 - 1, & \text{für } x \le 0 \\ -x^2, & \text{für } x > 0 \end{cases}$$

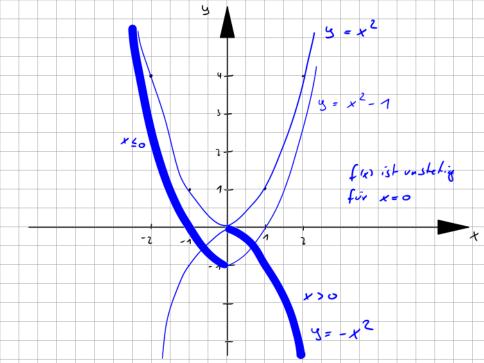
und

$$g(x) = \begin{cases} 3x - 2, & \text{für } x \le 2\\ -x + 6, & \text{für } x > 2 \end{cases}$$

Zeichne von jeder Funktion den Graphen.

Ist f stetig an der Stelle x = 0?

Ist g stetig an der Stelle x = 2?

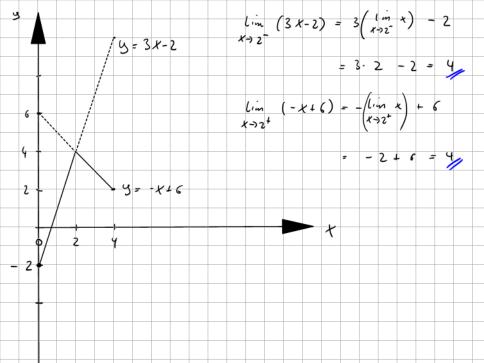


$$f(x) = \begin{cases} x^2 - 1 & |x| \le 0 \\ -x^2 & |x| > 0 \end{cases}$$

$$\lim_{x \to 0^+} -x^2 = -\lim_{x \to 0^+} x^2 = -\left(\frac{\lim_{x \to 0^+} x}{x^2}\right)^2 = -\left(0\right)^2 = 0$$

$$\lim_{x \to 0^+} x^2 - 1 = \left(\lim_{x \to 0^-} x^2\right) - 1 = \left(\lim_{x \to 0^-} x\right)^2 - 1 = 0^2 - 1 = -1$$

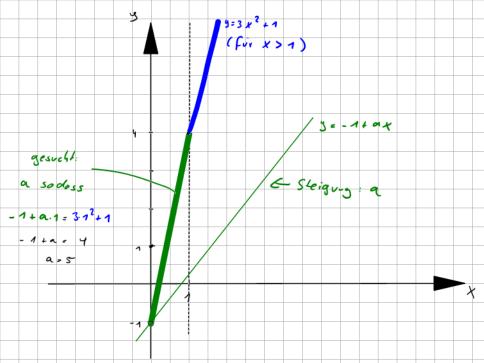
steting für x=0.



Aufgabe 7.8.5 auf Seite 325

Für welche Werte von a ist die folgende Funktion stetig für alle x?

$$f(x) = \begin{cases} ax - 1 & \text{, für } x \le 1\\ 3x^2 + 1 & \text{, für } x > 1 \end{cases}$$



Aufgabe 7.12.3 auf Seite 348

Verwende die Regel von L'Hôpital, um die folgenden Grenzwerte zu bestimmen:

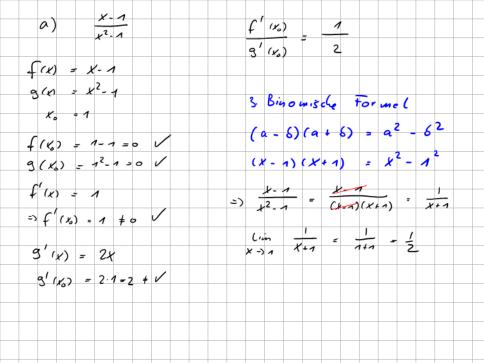
a)
$$\lim_{x\to 1} \frac{x-1}{x^2-1}$$

d)
$$\lim_{x\to 1} \frac{\ln(x)-x+1}{(x-1)^2}$$

e)
$$\lim_{x\to 1} \frac{1}{x-1} \ln \left(\frac{7x+1}{4x+4} \right)$$

falls
$$f(x_0)=0$$
 and $g(x_0)=0$
and falls f and g difference rear for $x=x_0$
and falls $g'(x_0) \neq 0$

$$\lim_{x \to x_0} \frac{f(x)}{g'(x)} = \frac{f'(x_0)}{g'(x_0)}$$



$$f(x) = (u(x) - x + 1)$$

$$f(x) = \frac{1}{x} - 1$$

$$f'(x) = \frac{1}{x} - 1$$

$$f''(x) = \frac{1}{x} - 1$$

Lu(X) -X+1

S(X) = (1-1)2 =0 V

9'(x) = 2(1-1) = 0

9'(x) = 2(x-1)

$$3''(x) = -\frac{1}{1^2} = -1$$

3"(K) = 2 +0 V

$$f(x_0) = \ln\left(\frac{7 \cdot n + 1}{4 \cdot n + 4}\right) = \ln\left(\frac{8}{8}\right) = \ln\left(1\right) = 0$$

$$g(x_0) = 1 - 1 = 0$$

$$\int_{avpree Ableity} \frac{1}{av_0 + 4} \frac{Ableity}{(4x+4)} = \frac{3'(x_0)}{(4x+4)^2}$$

$$\int_{x-1}^{1} \ln\left(\frac{7x+1}{4x+4}\right)$$

$$= \frac{4x+4}{7x+1} \cdot \frac{28x+28-28x-4}{(4x+4)^{2}} \xrightarrow{x-3} \frac{\frac{3}{8}}{1} = \frac{3}{8}$$

 $e) \quad \frac{1}{x \cdot n} \cdot \ln \left(\frac{7x + 1}{4x \cdot 4} \right) = \frac{\ln \left(\frac{7x + 1}{4x \cdot 4} \right)}{\ln \left(\frac{7x + 1}{4x \cdot 4} \right)}$

$$\frac{4x+4}{7x+1} \cdot \frac{2x+4}{(4x+4)^2}$$

$$=\frac{24}{(7x+1)(4)}$$

 $\int_{1}^{1} (1) = \frac{24}{8.8} = \frac{24}{64} = \frac{3}{8}$