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6.1 Steigungen von Kurven

y

x

y = f (x)

L

P

x0

f (x0)

Die Steigung der Tangente L an den Graphen in P heißt Ableitung
von f an der Stelle x0, wir bezeichnen diese Zahl mit f ′(x0).
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6.2 Tangenten und Ableitungen: Geometrische Idee

y

x

T

P

Q

Steigung der Tangente T :

Grenzwert der Steigung der Sekante PQ wenn sich Q auf dem
Graphen zu P bewegt.
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Newton-Quotient / Differenzen-Quotient

y

x

T

P = (x0, f (x0))

Q = (x0 +∆x , f (x0 +∆x))

∆x
f (x0 +∆x)− f (x0)

Steigung von PQ: f (x0+∆x)−f (x0)
∆x
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Definition: Ableitung

Die Ableitung der Funktion f an der Stelle x0, die mit f ′(x0)
bezeichnet wird, ist gegeben durch die Formel

f ′(x0) = lim
∆x→0

f (x0 +∆x)− f (x0)

∆x

Der Ausdruck lim∆x→0 bedeutet
”
Grenzwert für ∆x gegen null“.

Wir werden diesen Grenzwert später genauer definieren.

Die Funktion f besitzt nur dann eine Ableitung, bzw. ist nur dann
differenzierbar, falls dieser Grenzwert existiert.

Modul 1 Methodische Grundlagen: Vorkurs Mathematik Kapitel 06, Dr. Lars Metzger, September 2025, B Kontakt 6 / 34

mailto:mathe.wiwi@tu-dortmund.de


Definition der Tangente
Die Gleichung der Tangente an den Graphen der Funktion
y = f (x) im Punkt (x0, f (x0)) ist

y − f (x0) = f ′(x0)(x − x0)

Begründung:
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Beispiel: f (x) = x2 → Berechnung von f ′(x0)
Berechne:

f (x0 +∆x) =

f (x0 +∆x)− f (x0) =

f (x0+∆x)−f (x0)
∆x =

Ersetze ∆x durch 0.

Ableitung von f :

f ′(x0) =

Geradengleichung der Tangente:

y =
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Beispiel f (x) = x2

y

x

P

Steigung: 2x0 +∆x

Q

x0

∆x

x0 +∆x

(x0 +∆x)2 − x20
= 2x0∆x + (∆x)2

x20 = f (x0)

(x0 +∆x)2 = f (x0 +∆x)

−x20

Steigung: 2x0
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Berechnung der Ableitung

(i) Addiere ∆x ̸= 0 zu x0 und berechne f (x0 +∆x).

(ii) Berechne die zugehörige Änderung im Funktionswert:
f (x0 +∆x)− f (x0).

(iii) Bilde für ∆x ̸= 0 den Differenzen-Quotienten.

(iv) Vereinfache den Bruch aus Schritt (iii) so weit wie möglich.

(v) Dann ist f ′(x0) diejenige Zahl, gegen die der
Differenzen-Quotient strebt, wenn ∆x gegen 0 geht.
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Beispiel: f (x) = −x2

2 + 2x
Wie lautet die Ableitung f ′(x)?

Wie lautet die Geradengleichung der Tangente?
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6.3 Monoton wachsende und fallende Funktionen

Ist f (x) = − x2

2 + 2x monoton wachsend oder fallend?

Jeweils in welchem Bereich?
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Monotonie und Vorzeichen der Ableitung

Sei f eine Funktion mit der Ableitung f ′.

▶ f ′(x) ≥ 0 für alle x ⇔ f monoton wachsend

▶ f ′(x) > 0 für alle x ⇒ f strikt monoton wachsend

▶ f ′(x) ≤ 0 für alle x ⇔ f monoton fallend

▶ f ′(x) < 0 für alle x ⇒ f strikt monoton fallend

▶ f ′(x) = 0 für alle x ⇔ f konstant
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6.4 Ökonomische Anwendungen

Durchschnittliche Änderungsrate von f über dem Intervall von
x0 bis x0 +∆x :

f (x0 +∆x)− f (x0)

∆x

Änderungsrate von f in x0:

f ′(x0) = lim
∆x→0

f (x0 +∆x)− f (x0)

∆x

Relative Änderungsrate von f an der Stelle x0:

f ′(x0)

f (x0)
= lim

∆x→0

f (x0 +∆x)− f (x0)

∆x

1

f (x0)
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Beispiel 6.4.4: Grenzkosten

Sei mit C die monoton wachsende und differenzierbare
Kostenfunktion bezeichnet.

Grenzkosten an der Stelle x :

C ′(x) = lim
∆x→0

C (x +∆x)− C (x)

∆x

Falls |∆x | sehr klein im Vergleich zu x :

C ′(x) ≈ C (x +∆x)− C (x)

∆x

Falls x sehr groß und ∆x = 1:

C ′(x) ≈ C (x + 1)− C (x)
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6.5 Eine kurze Einführung zu Grenzwerten

Sei f eine Funktion.

Der Ausdruck
lim
x→x0

f (x) = A

heißt Grenzwert von f für x gegen x0.

Er bedeutet, dass wir f (x) so nah an A finden können, wie wir
wollen, für alle x nah genug an x0, aber nicht notwendig gleich x0.
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Beispiel: f (x) = ex−1
x für x ̸= 0

x

y

f (x) = ex−1
x

f (x) = ex−1
x

−2 −1 1 2

1

2

3

x −1 −0.1 −0.01 −0.001

f (x) 0.632 0.956 0.999 1.000

x 1 0.1 0.01 0.001

f (x) 1.718 1.052 1.001 1.000

lim
x→0

ex−1
x = 1
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Regeln für Grenzwerte

Es seien f und g zwei Funktionen.

Wenn die Grenzwerte lim
x→x0

f (x) und lim
x→x0

g(x) existieren, dann gilt:

▶ lim
x→x0

(f (x)± g(x)) = lim
x→x0

f (x)± lim
x→x0

g(x)

▶ lim
x→x0

(f (x) · g(x)) = lim
x→x0

f (x) · lim
x→x0

g(x)

▶ lim
x→x0

f (x)
g(x) =

lim
x→x0

f (x)

lim
x→x0

g(x) , falls lim
x→x0

g(x) ̸= 0

▶ lim
x→x0

(f (x)r ) = ( lim
x→x0

f (x))r , für r ∈ R
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6.6 Einfache Regeln der Differentiation

Wenn f eine konstante Funktion ist, dann ist ihre Ableitung 0:

f (x) = A für alle x ⇒ f ′(x) = 0

Additive Konstanten verschwinden beim Ableiten:

(A+ f (x))′ = f ′(x)

Multiplikative Konstanten bleiben erhalten:

(Af (x))′ = Af ′(x)

Für eine beliebige reelle Konstante r gilt:

f (x) = x r ⇒ f ′(x) = rx r−1
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Ableitung der Wurzel

Wie lautet der Differenzenquotient für f (x) =
√
x?

Benutze die dritte binomische Formel (a+ b)(a− b) = a2 − b2 um
den Differenzenquotienten zu vereinfachen!
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6.7 Ableitungen von Summen und Differenzen

Seien f , g : D → R mit D ⊆ R.

Wenn f und g beide in x ∈ D differenzierbar sind, dann sind die
Summe f + g und die Differenz f − g auch in x differenzierbar und
es gilt:

(f (x) + g(x))′ = f ′(x) + g ′(x)

und
(f (x)− g(x))′ = f ′(x)− g ′(x)
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Beispiel: Gewinn

Es seien R(x) der Erlös und C (x) die Kosten einer Firma bei
gegebener Ausbringungsmenge x ≥ 0.

Der Gewinn der Firma sei definiert durch:

π(x) = R(x)− C (x)

Der Grenzgewinn der Firma ist dann:

π′(x) = R ′(x)− C ′(x)

Insbesondere ist der Grenzgewinn gleich null genau dann wenn der
Grenzerlös den Grenzkosten entspricht.

Modul 1 Methodische Grundlagen: Vorkurs Mathematik Kapitel 06, Dr. Lars Metzger, September 2025, B Kontakt 22 / 34

mailto:mathe.wiwi@tu-dortmund.de


R(x)

C (x)

x

C ,R

x∗

Steigung: R ′(x∗)

Steigung: C ′(x∗)

π(x) = R(x)− C (x)
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6.7 Produktregel

Seien f und g zwei differenzierbare Funktionen.

Dann ist auch das Produkt f · g differenzierbar und es gilt:

(f (x) · g(x))′ = f ′(x) · g(x) + f (x) · g ′(x)
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6.7 Quotientenregel

Seien f und g zwei differenzierbare Funktionen.

Wenn g(x) ̸= 0, dann ist auch f /g differenzierbar in x und es gilt:(
f (x)

g(x)

)′
=

f ′(x) · g(x)− f (x) · g ′(x)

(g(x))2
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Beispiel: Durchschnittskosten
Es seien C (x) die Gesamtkosten einer Firma bei
Ausbringungsmenge x ≥ 0.

Für x > 0 seien C (x)/x die Durchschnittskosten der Firma.

Zu Berechnen:

d

dx
(C (x)/x) =
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6.8 Kettenregel

Seien f und g zwei differenzierbare Funktionen.

Dann ist auch die Verkettung f ◦ g differenzierbar und es gilt:

(f (g(x)))′ = f ′(g(x))g ′(x)
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Beispiel: optimale Konsumentscheidung

Die Konsumentscheidung x ≥ 0 für ein Gut hänge vom
verfügbaren Einkommen m ≥ 0 ab

→ Funktion x(m)

Das verfügbare Einkommen m ≥ 0 hänge vom Lohnsatz ω ≥ 0 ab

→ Funktion m(ω)

Dies ergibt die verkettete Funktion x(m(ω)).

Mit der Kettenregel können wir berechnen, wie sich der Konsum x
ändert, falls sich der Lohnsatz ω ändert:

(x(m(ω)))′ = x ′(m) ·m′(ω)
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6.9 Ableitungen höherer Ordnung

Die Ableitung f ′ wird auch erste Ableitung genannt.

Wird die Ableitungsfunktion f ′ erneut abgeleitet, heißt das
Resultat zweite Ableitung: f ′′ = (f ′)′.

f ′′(x) ist dann die zweite Ableitung an der Stelle x .

Alternative Notation:

f ′′(x) =
d2f (x)

(dx)2
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Dritte und höhere Ableitungen

Dritte Ableitung

y = f (x) ⇒ y ′′′ = f ′′′(x)

Vierte Ableitung

y = f (x) ⇒ y (4) = f (4)(x)

n-te Ableitung

y = f (x) ⇒ y (n) = f (n)(x)
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6.10 Exponentialfunktion

Die natürliche Exponentialfunktion

f (x) = ex ≈ 2.71828x , x ∈ R

Differenzen-Quotient:

f (x +∆x)− f (x)

∆x
=

ex+∆x − ex

∆x
=

exe∆x − ex

∆x
= ex

e∆x − 1

∆x

Wir hatten zuvor argumentiert: lim
∆x→0

e∆x−1
∆x = 1

Ableitung der natürlichen Exponentialfunktion

f (x) = ex ⇒ f ′(x) = ex
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Überblick: Natürliche Exponentialfunktion

Die natürliche Exponentialfunktion

f (x) = exp(x) = ex (e = 2.71828 . . .)

ist differenzierbar und strikt monoton wachsend.

Es gilt:
f ′(x) = f (x) = ex

Die folgenden Eigenschaften gelten für alle Exponenten s und t:

(a) eset = es+t (b) es/et = es−t (c) (es)t = est

Ferner gilt:

lim
x→−∞

ex = 0 e0 = 1 lim
x→∞

ex = ∞
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6.11 Logarithmusfunktion - Ableitung
Wir leiten beide Seiten der Gleichung

e ln(y) = y

nach y ab.

Ableiung linke Seite: Kettenregel

▶ innere Funktion: g(y) = ln(y) ⇒ g ′(y) = ln′(y).

▶ äußere Funktion: f (x) = ex ⇒ f ′(x) = ex

Anwendung der Kettenregel auf der linken Seite ergibt:(
e ln(y)

)′
= e ln(y) · ln′(y)

Die Ableitung der rechten Seite der Gleichung lautet (y)′ = 1.

⇒ e ln(y)︸ ︷︷ ︸
=y

· ln′(y) = 1 ⇔ ln′(y) =
1

y
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Zusammenfassung

▶ Differenzen-Quotient

▶ Monotonie

▶ Grenzwerte

▶ Ableitungsregeln

▶ natürliche Exponential- und Logarithmusfunktion
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