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6.1 Steigungen von Kurven

y

Die Steigung der Tangente L an den Graphen in P heit Ableitung
von f an der Stelle xg, wir bezeichnen diese Zahl mit f'(xp).
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6.2 Tangenten und Ableitungen: Geometrische Idee

y T

N

Steigung der Tangente T:

Grenzwert der Steigung der Sekante PQ wenn sich Q auf dem
Graphen zu P bewegt.
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Newton-Quotient / Differenzen-Quotient

Y T

Q = (x0 + Ax, f(x0 + Ax))
[lorax) -

f % T R~ N

Kom kﬁ“'A{ X

fxotAx)—f(x) Aw
AX [ ——

Steigung von PQ: =~
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Definition: Ableitung

Die Ableitung der Funktion f an der Stelle xp, die mit f'(xp)
bezeichnet wird, ist gegeben durch die Formel
f(xo + Ax) — f(xo)

Ax

’ _ o
Flx) = Allrzo

Der Ausdruck limay_.o bedeutet ,, Grenzwert fiir Ax gegen null".

Wir werden diesen Grenzwert spater genauer definieren.

Die Funktion f besitzt nur dann eine Ableitung, bzw. ist nur dann
differenzierbar, falls dieser Grenzwert existiert.
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Definition der Tangente

Die Gleichung der Tangente an den Graphen der Funktion
y = f(x) im Punkt (xo, f(xo)) ist

y = f(x0) = '(x0)(x — x0)

Begriindung: Civ xed

43 __M,f’r/) | - (- )
AX X - ° °

>
P

,
- L) - NPT

, ) ° oL
Ae senadsdg——— 2y
4~ Aelse L) L x +--x
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Beispiel: f(x) = x?> — Berechnung von '(xp)

Berechne: @.:.6) ale2ab + 4

o L 2
fxo+Ax) = (3 +4%) = x o ax + U
{60 = 52

Flx0 + Ax) — Fxg) = 3 +238x + (an? — &

X

2
f(xo+Ax)—f(x0) _ 2), 4% + [dx) N M

Ersetze Ax durch 0.
Ableitung von f:
f,(Xo) — 2 /Yo ACLSQ qésﬂ.'.#

Geradengleichung der Tangente:
‘5:1(?;4,)-_{"%1;(, ;-f{/u),x
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Beispiel f(x) = x?

y
(xo+Ax)2 = f(xg + Ax) p-------------

Steigung: 2xp + Ax
Q +

3 (xo + Ax)? — xg
3 = 2xpAx + (Ax)?

Steiigung: 2x0

x5 =f(x0) [~

I\
—xg/XO xo + Ax X

Modul 1 Methodische Grundlagen: Vorkurs Mathematik Kapitel 06, Dr. Lars Metzger, September 2025, =< Kontakt 9 /34


mailto:mathe.wiwi@tu-dortmund.de

Berechnung der Ableitung

(i) Addiere Ax # 0 zu xp und berechne f(xp + Ax).

(i) Berechne die zugehorige Anderung im Funktionswert:
f(xo + Ax) — f(x0). = Ay

(iii) Bilde fiir Ax # 0 den Differenzen-Quotienten.
(iv) Vereinfache den Bruch aus Schritt (iii) so weit wie méglich.

(v) Dann ist f'(xp) diejenige Zahl, gegen die der
Differenzen-Quotient strebt, wenn Ax gegen 0 geht.
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1 1 . _ X2
Beispiel: f(x) = =% + 2x
Wie lautet die Ableitung f'(x)?
Wie lautet die Geradengleichung der Tangente?

(¢) - (()(JAX) = —‘(’5%4—")2- J-ZE(o +Aﬁ()

= __ZL (A’M.dx)z.:- 2(x% "AK)

L}

~§ (4 + 23 Ax 4-(4502) F 2% + 24

o d - max - Lant v 2% - 24K

ff/o) - 1gteax

(O Ay - iR - [ox)

Modul 1 Methodische Grundlagen: Vorkurs Mathematik Kapitel 06, Dr. Lars Metzger, September 2025, =< Kontakt

11/ 34


mailto:mathe.wiwi@tu-dortmund.de

2
: ";4 - X% d4x - —i (4° + 2% + de_(—,z".,(oz+ 2,\2)

=%~%4x~£(dmz+g+zdx +%¢2’_%
“Hdx - é(4X)2 + 24X

M(‘%’ézix 1)

{-g'i)é_B:-F K L4 -[ﬁ;) ) M(~% L Ax e D)

W

Ax Ax -
= 2-X, — E"A}(
N O )
(v) Axso Ax = 2- = f ({,)



/
G = [ (x) = =% +2
-C * Zx + 2x )C
GC re d’"S/CI-Ct’UﬂJ ofe, T“""(’\"‘#C

2
S5 % E 26 {22k +(r2) X
£ & (2 -54)
s s w23 H K -2+ o)X

s % o+ (2-0) X



6.3 Monoton wachsende und fallende Funktionen

Ist f(x) = —X; + 2x monoton wachsend oder fallend?

2 A
Jeweils in welchem Bereich? (a +8)Ca-€) = a® - 6

X, % owit >

T Z
_F-{Xé) -—_‘C\(X-f) - -52’?— + ZX‘?, "‘(‘ % = 23(4)

T
= _ X 2 »ng
> L o+ _.—2. — 25

s
L2 K4 v 2 - 2K
2 2
EA 2
£

/ 2 a
__2('(2’ _z'?') 4_2[,\/2_’(1)

"

L UG ) Ci- k) 2K - )

Modul 1 Methodische Grundlagen: Vorkurs Mathematik Kapitel 06, Dr. Lars Metzger, September 2025, =< Kontakt 12 / 34


mailto:mathe.wiwi@tu-dortmund.de

Ll

(ks ‘Mj)[‘\é{k/;fx’t) +§ 2 ©
L—"“'\_-

7o
I

=) —s (K Ee) +2 > o

) 9 2 > -é (X,'#A’z)

=1 ¥, <
C=)A Xatk < Y4 Fafs X 4 €2
run clh flen) < f1x)

.F(,QJ L

Fo 1

| —t .
0 2 2 ;I\



[/Of 2€ C,Lm‘ O(Pf /4 (g(fp‘/ L/ud ?

(60 - -% + 2x £

/
.F-f/() S0 ) —X¥ + 2 o



Monotonie und Vorzeichen der Ableitung

Sei f eine Funktion mit der Ableitung f'.

» f'(x) >0 fiir alle x < f monoton wachsend

» f'(x) > 0 fiir alle x = f strikt monoton wachsend
» f'(x) <0 fiir alle x < f monoton fallend

» f'(x) <O fiir alle x = f strikt monoton fallend

» f'(x) =0 fiir alle x < f konstant

. /
Bespel L = %3 fro=-3x?
E) f
g a3 fo)=o0
X
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6.4 Okonomische Anwendungen

Durchschnittliche Anderungsrate von f iiber dem Intervall von
Xxo bis xp + Ax:
f(x0 + Ax) — f(xo)
Ax

Anderungsrate von f in xp:

. f(xo+ Ax) — f(x0)
f' =1
(x0) axSo Ax
Relative Anderungsrate von f an der Stelle xo:

o f(xo+ Ax) — f(xp) 1
f(Xo) N Ax—0 Ax f(Xo)
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Beispiel 6.4.4: Grenzkosten

Sei mit C die monoton wachsende und differenzierbare
Kostenfunktion bezeichnet.

Grenzkosten an der Stelle x:

cto= g, 5130260

Falls |[Ax| sehr klein im Vergleich zu x:

C(x + Ax) — C(x)
Ax

C'(x) ~
Falls x sehr groB und Ax = 1:

C'(x) =~ C(x+1) — C(x)
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6.5 Eine kurze Einfiihrung zu Grenzwerten

Sei f eine Funktion.

Der Ausdruck
lim f(x)=A

X—rX0

heiBt Grenzwert von f fiir x gegen xp.

Er bedeutet, dass wir f(x) so nah an A finden kdnnen, wie wir
wollen, fiir alle x nah genug an xp, aber nicht notwendig gleich xg.
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Beispiel: f(x) = % fir x #20 [(o) = ¢ “D" A1

)

nicht O(P/r'w‘l.

olg

y
_ e*-1
3 f(X) X
2
X
-2 -1 1 2
X -1 -0.1 | —0.01 | —0.001
f(x) | 0.632 | 0.956 | 0.999 | 1.000 im €=l _ 1
m
X 1 0.1 0.01 0.001 x—=0 X
f(x) | 1.718 [ 1.052 | 1.001 | 1.000
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Regeln fiir Grenzwerte

Es seien f und g zwei Funktionen.

Wenn die Grenzwerte lim f(x) und lim g(x) existieren, dann gilt:
X—rX0 X—X0

> lim (f(x) £ g(x)) = XIi_}an)f(x) + lim g(x)

X—rX0 X—rX0

> lim (f(x)-g(x)) = lim f(x)- lim g(x)

X—rX0 X—rX0 X—rX0

P lim f(x)
> lim £ — oni) fallslim g(x)#0
X—+X0

x—xo8()  lim g(x

> lim (f(x)") = (lim f(x))", firreR

X—rX0 X—>X0

Modul 1 Methodische Grundlagen: Vorkurs Mathematik Kapitel 06, Dr. Lars Metzger, September 2025, =< Kontakt 18 / 34


mailto:mathe.wiwi@tu-dortmund.de

6.6 Einfache Regeln der Differentiation

Wenn f eine konstante Funktion ist, dann ist ihre Ableitung 0:
f(x) = Afiir alle x = f'(x) =0

Additive Konstanten verschwinden beim Ableiten:
(A+f(x) = f(x)

Multiplikative Konstanten bleiben erhalten:
(Af(x)) = Af'(x)

Fiir eine beliebige reelle Konstante r gilt:

/ f(x)=x"= f'(x) = "1
28 C'Vl) 2 () - ax?
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,i:(ko - A [L} qé@ X

Ax+0

+ ]
B T VP
qlxt 40 - alo fierdova — (Fuo « 4)
—_— = -
2x AX
. Furdo sa [0 - A [lasn fw
AX 4 x

r
=) % r/() = 7[‘/(‘()



3 = A fw

stns0 s | Afrias S AL s [
- -__—_________\ -
Ax AX ATy

> slw=-A ,f/"&’)



Ableitung der Wurzel

Wie lautet der Differenzenquotient fiir f(x) = /x?

Benutze die dritte binomische Formel (a4 b)(a — b) = a®> — b?> um

den Differenzenquotienten zu vereinfachen!

a 6 a + §
_[(,(#Ax) - ./-(-r} ( Yide — J_-k/,)- Cﬂl¥4*]ﬁ ﬁ"]
Ax Ak ’ (‘Jfﬁdr [S rr)-(?)
ou.z Ll
[ Pamen) A
Xt Ax - x _AK

i / /
- — = {
s > > =4
'[w X >0 Ax-s o X +Ux 2 X
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6.7 Ableitungen von Summen und Differenzen

Seien f,g: D — R mit D C R.

Wenn f und g beide in x € D differenzierbar sind, dann sind die
Summe f + g und die Differenz f — g auch in x differenzierbar und
es gilt:

(f(x) +g(x))" = f'(x) + &'(x)
und

(f(x) — g(x))' = f'(x) — &'(x)
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Beispiel: Gewinn Pavse bie 11 == Uhs

Es seien R(x) der Erlos und C(x) die Kosten einer Firma bei
gegebener Ausbringungsmenge x > 0.

Der Gewinn der Firma sei definiert durch:

Der Grenzgewinn der Firma ist dann:
m'(x) = R'(x) = C'(x)

Insbesondere ist der Grenzgewinn gleich null genau dann wenn der
Grenzerlos den Grenzkosten entspricht.

Modul 1 Methodische Grundlagen: Vorkurs Mathematik Kapitel 06, Dr. Lars Metzger, September 2025, =< Kontakt 22 /34


mailto:mathe.wiwi@tu-dortmund.de

C,R

Steigung: R'(x*)

Steigung: C’'(x*)
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6.7 Produktregel

Seien f und g zwei differenzierbare Funktionen.

Dann ist auch das Produkt f - g differenzierbar und es gilt:

(F(x) - g(x)) = f'(x) - g(x) + f(x) - &'(x)
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(lrean. 3 xrds) - {05 k)
Ax

(ean-g dx) -[o3xe8x) - L0509 {00 S (Kkgx)
' A x

(_F‘{')(J.Ax) _ﬂ((}) } (X A)() + ]C(x)(:- Q) + 4 Gt 44‘())
E .

’ -F QUtdD — alx)
‘{4’4-4)() -)C ,3(,(;.4.,() + _F'(X), .
A x dx

— -C!fx) a0+ fta. 8"y
Ar=o



6.7 Quotientenregel

Seien f und g zwei differenzierbare Funktionen.

Wenn g(x) # 0, dann ist auch f /g differenzierbar in x und es gilt:

<f(X)>' _ () -e(x) — f(x) - g'(x)
g(x) (g(x))*
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. : £\ _fl5 — £
Beispiel: Durchschnittskosten (3’) ST

Es seien C(x) die Gesamtkosten einer Firma bei
Ausbringungsmenge x > 0.

Fiir x > 0 seien C(x)/x die Durchschnittskosten der Firma.

f ’
Zu Berechnen: o= ' 3 =1
£
d ~— 2 . CIC\’) X = ) A
E(C(X)/X) = -z

i clwrx - clo
X X

= L (C{fx}{— fi{))
X

X X
l C c'to g'{))
= ; X
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6.8 Kettenregel /g* 5 - (( S(X))

al' erg 'kM‘PrC
,'::,_q!,,\_ Fowmlelige

Seien f und g zwei differenzierbare Funktionen.

Dann ist auch die Verkettung f o g differenzierbar und es gilt:

(f(g(x))) = f'(g(x))g’(x)
| R W—
Alle p(u,x d Alled vag ofz,

d"fﬂ"‘- PP R
ra"‘([‘e& F./wkfw;n_
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((.(3 (J(J-Ax)) - _F-f5 rx\,)) . (.S'{X*‘d“) B %q,))
-

A X (3 (xedo -3)

(.C(%’“df)) - o["‘i's{”)) (3letdn -5 («))

Ax. (3(xFdc) — %(ﬂ)
w

(((3089) ~ fraea)) (8 lre0 -5 )
T (3 - g ) - 4Ax

(5 (s di)) ~£ (30%) B tdx) — B (x) [
) _‘E__S____i)__ﬁ__.- : — Ff%m}-g’*{x}

a (ptda = ) 4 x Arse




Beispiel: optimale Konsumentscheidung

Die Konsumentscheidung x > 0 fiir ein Gut hange vom
verfiigbaren Einkommen m > 0 ab avfoere Foulels

yd

— Funktion x(m)

Das verfiigbare Einkommen m > 0 hdange vom Lohnsatz w > 0 ab

Y. Fowlek,
) fa € =
— Funktion m(w) ~

Dies ergibt die verkettete Funktion x(m(w)).

Mit der Kettenregel konnen wir berechnen, wie sich der Konsum x
andert, falls sich der Lohnsatz w dndert:

(x(m(w))) = x'(m) - m'(w)
7 r
s, i,
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6.9 Ableitungen hoherer Ordnung

o ﬂuu 4"'.f

a(,Cfo
=

Die Ableitung f’ wird auch erste Ableitung genannt.

Wird die Ableitungsfunktion ' erneut abgeleitet, heiBt das
Resultat zweite Ableitung: " = (f')".

f"(x) ist dann die zweite Ableitung an der Stelle x.

Alternative Notation:

_ d?f(x)
(dx)*

f(x)
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Dritte und hohere Ableitungen

Dritte Ableitung

y="f(x)=y"=f"(x)
Vierte Ableitung

y = f(x) = y® = fO(x)
n-te Ableitung

y = f(x) =yt = f(x)
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. . m n m
6.10 Exponentialfunktion * o - a s o

Die natiirliche Exponentialfunktion

f(x)=e"~271828" ,x € R

Differenzen-Quotient:

f(x + Ax) — f(x)  eTAX — X (j) eXehx — ¥ eBtx 1

Ax Ax Ax

. . . Ax_
Wir hatten zuvor argumentiert: lim € l—1
Ax—0

Ableitung der natiirlichen Exponentialfunktion

f(x)=e = f'(x)=€"
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Uberblick: Natiirliche Exponentialfunktion

Die natiirliche Exponentialfunktion
f(x) = exp(x) = €~ (e =2.71828...)

ist differenzierbar und strikt monoton wachsend.

Es gilt:
f'(x) = f(x) = &

Die folgenden Eigenschaften gelten fiir alle Exponenten s und t:

(a) e®e’ = e°T! (b) e° /et = et (c) (&) =e
Ferner gilt:

lim =0 e =1 lim X = oo
X——00 X—>00
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6.11 Logarithmusfunktion - Ableitung
Wir leiten beide Seiten der Gleichung

en(y) — y

nach y ab.

Ableiung linke Seite: Kettenregel
» innere Funktion: g(y) = In(y) = g'(y) = In'(y).
» GuBere Funktion: f(x) = & = f'(x) = &~

Anwendung der Kettenregel auf der linken Seite ergibt:

(eln(y)), = "0 n'(y)

Die Ableitung der rechten Seite der Gleichung lautet (y) = 1.

1

In(y) / = / = —

=e In'(y) =1 < In'(y) "
=y
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Zusammenfassung

» Differenzen-Quotient
» Monotonie

» Grenzwerte

> Ableitungsregeln

» natiirliche Exponential- und Logarithmusfunktion
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