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Preface 

Game theory is the study of multiperson decision problems. Such 
problems arise frequently in economics. As is widely appreciated, 
for example, oligopolies present multiperson problems — each 
firm must consider what the others will do. But many other ap
plications of game theory arise in fields of economics other than 
industrial organization. At the micro level, models of trading 
processes (such as bargaining and auction models) involve game 
theory. At an intermediate level of aggregation, labor and finan
cial economics include game-theoretic models of the behavior of 
a firm in its input markets (rather than its output market, as in 
an oligopoly). There also are multiperson problems within a firm: 
many workers may vie for one promotion; several divisions may 
compete for the corporation's investment capital. Finally, at a high 
level of aggregation, international economics includes models in 
which countries compete (or collude) in choosing tariffs and other 
trade policies, and macroeconomics includes models in which the 
monetary authority and wage or price setters interact strategically 
to determine the effects of monetary policy. 

This book is designed to introduce game theory to those who 
will later construct (or at least consume) game-theoretic models 
in applied fields within economics. The exposition emphasizes 
the economic applications of the theory at least as much as the 
pure theory itself, for three reasons. First, the applications help 
teach the theory; formal arguments about abstract games also ap
pear but play a lesser role. Second, the applications illustrate the 
process of model building — the process of translating an infor
mal description of a multiperson decision situation into a formal, 
game-theoretic problem to be analyzed. Third, the variety of ap
plications shows that similar issues arise in different areas of eco
nomics, and that the same game-theoretic tools can be applied in 
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each setting. In order to emphasize the broad potential scope of 
tiie theory, conventional applications from industrial organization 
largely have been replaced by applications from labor, macro, and 
other applied fields in economics.1 

We will discuss four classes of games: static games of com
plete information, dynamic games of complete information, static 
games of incomplete information, and dynamic games of incom
plete information. (A game has incomplete information if one 
player does not know another player's payoff, such as in an auc
tion when one bidder does not know how much another bidder 
is willing to pay for the good being sold.) Corresponding to these 
four classes of games will be four notions of equilibrium in games: 
Nash equilibrium, subgame-perfect Nash equilibrium, Bayesian 
Nash equilibrium, and perfect Bayesian equilibrium. 

Two (related) ways to organize one's thinking about these equi
librium concepts are as follows. First, one could construct se
quences of equilibrium concepts of increasing strength, where 
stronger (i.e., more restrictive) concepts are attempts to eliminate 
implausible equilibria allowed by weaker notions of equilibrium. 
We will see, for example, that subgame-perfect Nash equilibrium 
is stronger than Nash equilibrium and that perfect Bayesian equi
librium in turn is stronger than subgame-perfect Nash equilib
rium. Second, one could say that the equilibrium concept of in
terest is always perfect Bayesian equilibrium (or perhaps an even 
stronger equilibrium concept), but that it is equivalent to Nash 
equilibrium in static games of complete information, equivalent 
to subgame-perfection in dynamic games of complete (and per
fect) information, and equivalent to Bayesian Nash equilibrium in 
static games of incomplete information. 

The book can be used in two ways. For first-year graduate stu
dents in economics, many of the applications will already be famil
iar, so the game theory can be covered in a half-semester course, 
leaving many of the applications to be studied outside of class. 
For undergraduates, a full-semester course can present the theory 
a bit more slowly, as well as cover virtually all the applications in 
class. The main mathematical prerequisite is single-variable cal
culus; the rudiments of probability and analysis are introduced as 
needed. 

'A good source for applications oi game theory in industrial organization is 
Mie'sTheTheon/offnctusfrialOrganizaiion (MIT Press, 1988). 
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I learned game theory from David Kreps, John Roberts, and 
Bob Wilson in graduate school, and from Adam Brandenburger, 
Drew Fudenberg, and Jean Tirole afterward. I owe the theoreti
cal perspective in this book to them. The focus on applications 
and other aspects of the pedagogical style, however, are largely 
due to the students in the MIT Economics Department from 1985 
to 1990, who inspired and rewarded the courses that led to this 
book. I am very grateful for the insights and encouragement all 
these friends have provided, as well as for the many helpful com
ments on the manuscript I received from Joe Farrell, Milt Harris, 
George Mailath, Matthew Rabin, Andy Weiss, and several anony
mous reviewers. Finally, I am glad to acknowledge the advice and 
encouragement of Jack Repcheck of Princeton University Press and 
financial support from an Olin Fellowship in Economics at the Na
tional Bureau of Economic Research. 



Chapter 1 

Static Games of Complete 
Information 

In this chapter we consider games of the following simple form: 
first the players simultaneously choose actions; then the players 
receive payoffs that depend on the combination of actions just cho
sen. Within the class of such static (or simultaneous-move) games, 
we restrict attention to games of complete information. That is, each 
player's payoff function (the function that determines the player's 
payoff from the combination of actions chosen by the players) is 
common knowledge among all the players. We consider dynamic 
(or sequential-move) games in Chapters 2 and 4, and games of 
incomplete information (games in which some player is uncertain 
about another player's payoff function—as in an auction where 
each bidder's willingness to pay for the good being sold is un
known to the other bidders) in Chapters 3 and 4. 

In Section 1.1 we take a first pass at the two basic issues in 
game theory: how to describe a game and how to solve the re
sulting game-theoretic problem. We develop the tools we will use 
in analyzing static games of complete information, and also the 
foundations of the theory we will use to analyze richer games in 
later chapters. We define the normal-form representation of a game 
and the notion of a strictly dominated strategy. We show that some 
games can be solved by applying the idea that rational players 
do not play strictly dominated strategies, but also that in other 
games this approach produces a very imprecise prediction about 
the play of the game (sometimes as imprecise as "anything could 
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2 STATIC GAMES OF COMPLETE INFORMATION 

happen"). We then motivate and define Nash equilibrium—a so
lution concept that produces much tighter predictions in a very 
broad class of games. 

In Section 1.2 we analyze four applications, using the tools 
developed in the previous section: Cournot's (1838) model of im
perfect competition, Bertrand's (1883) model of imperfect com
petition, Farber's (1980) model of final-offer arbitration, and the 
problem of the commons (discussed by Hume [1739] and others). 
In each application we first translate an informal statement of the 
problem into a normal-form representation of the game and then 
solve for the game's Nash equilibrium. (Each of these applications 
has a unique Nash equilibrium, but we discuss examples in which 
this is not true.) 

In Section 1.3 we return to theory. We first define the no
tion of a mixed strategy, which we will interpret in terms of one 
player's uncertainty about what another player will do. We then 
state and discuss Nash's (1950) Theorem, which guarantees that a 
Nash equilibrium (possibly involving mixed strategies) exists in a 
broad class of games. Since we present first basic theory in Sec
tion 1.1, then applications in Section 1.2, and finally more theory 
in Section 1.3, it should be apparent that mastering the additional 
theory in Section 1.3 is not a prerequisite for understanding the 
applications in Section 1.2. On the other hand, the ideas of a mixed 
strategy and the existence of equilibrium do appear (occasionally) 
in later chapters. 

This and each subsequent chapter concludes with problems, 
suggestions for further reading, and references. 

1.1 Basic Theory: Normal-Form Games and Nash 
Equilibrium 

1.1A Normal-Form Representation of Games 

In the normal-form representation of a game, each player simul
taneously chooses a strategy, and the combination of strategies 
chosen by the players determines a payoff for each player. We 
illustrate the normal-form representation with a classic example 
— The Prisoners' Dilemma. Two suspects are arrested and charged 
with a crime. The police lack sufficient evidence to convict the sus
pects, unless at least one confesses. The police hold the suspects in 
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separate cells and explain the consequences that will follow from 
the actions they could take. If neither confesses then both will be 
convicted of a minor offense and sentenced to one month in jail. 
If both confess then both will be sentenced to jail for six months. 
Finally, if one confesses but the other does not, then the confes
sor will be released immediately but the other will be sentenced 
to nine months in jail—six for the crime and a further three for 
obstructing justice. 

The prisoners' problem can be represented in the accompany
ing bi-matrix. (Like a matrix, a bi-matrix can have an arbitrary 
number or rows and columns; "bi" refers to the fact that, in a 
two-player game, there are two numbers in each cell—the payoffs 
to the two players.) 

Prisoner 2 
» * rv _i. 

Mum 
Prisoner 1 

T-i. 1 

1 1 

n r» 

Q n 

c L 

The Prisoners' Dilemma 

In this game, each player has two strategies available: confess 
(or fink) and not confess (or be mum). The payoffs to the two 
players when a particular pair of strategies is chosen are given in 
the appropriate cell of the bi-matrix. By convention, the payoff to 
the so-called row player (here, Prisoner 1) is the first payoff given, 
followed by the payoff to the column player (here. Prisoner 2). 
Thus, if Prisoner 1 chooses Mum and Prisoner 2 chooses Fink, for 
example, then Prisoner 1 receives the payoff - 9 (representing nine 
months in jail) and Prisoner 2 receives the payoff 0 (representing 
immediate release). 

We now turn to the general case. The normal-form representation 
of a game specifies: (1) the players in the game, (2) the strategies 
available to each player, and (3) the payoff received by each player 
for each combination of strategies that could be chosen by the 
players. We will often discuss an n-player game in which the 
players are numbered from 1 to n and an arbitrary player is called 
player i. Let S; denote the set of strategies available to player i 
(called J'S strategy space), and let s, denote an arbitrary member of 
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strategy s, is a member of the set of strategies S,.) Let (s 1 ? . . . ,s„) 
denote a combination of strategies, one for each player, and let 
ui denote player i's payoff function: tt/(si,...,sM) is the payoff to 
player i if the players choose the strategies (s i , . . . ,s„). Collecting 
all of this information together, we have: 

Definition The normal-form representation of an n-player game spec
ifies the players' strategy spaces Si,..., S„ and their payoff functions 
Mi,..., u„. We denote this game byG = {Si , . . . , S„; ux u„}. 

Although we stated that in a normal-form game the players 
choose their strategies simultaneously, this does not imply that the 
parties necessarily act simultaneously: it suffices that each choose 
his or her action without knowledge of the others' choices, as 
would be the case here if the prisoners reached decisions at ar
bitrary times while in their separate cells. Furthermore, although 
in this chapter we use normal-form games to represent only static 
games in which the players all move without knowing the other 
players' choices, we will see in Chapter 2 that normal-form repre
sentations can be given for sequential-move games, but also that 
an alternative—the extensive-form representation of the game—is 
often a more convenient framework for analyzing dynamic issues. 

l.l.B Iterated Elimination of Strictly Dominated 
Strategies 

Having described one way to represent a game, we now take a 
first pass at describing how to solve a game-theoretic problem. 
We start with the Prisoners' Dilemma because it is easy to solve, 
using only the idea that a rational player will not play a strictly 
dominated strategy. 

In the Prisoners' Dilemma, if one suspect is going to play Fink, 
then the other would prefer to play Fink and so be in jail for six 
months rather than play Mum and so be in jail for nine months. 
Similarly, if one suspect is going to play Mum, then the other 
would prefer to play Fink and so be released immediately rather 
than play Mum and so be in jail for one month. Thus, for prisoner 
i, playing Mum is dominated by playing Fink—for each strategy 
that prisoner / could choose, the payoff to prisoner i from playing 
Mum is less than the payoff to i from playing Fink. (The same 
would be true in any bi-matrix in which the payoffs 0 , - 1 , - 6 , 
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and - 9 above were replaced with payoffs T, R, P, and S, respec
tively, provided that T > R > P > S so as to capture the ideas 
of temptation, reward, punishment, and sucker payoffs.) More 
generally: 

Definition In the normal-form game G = {Si,..., S„;Hi,...,u„}, let 
s[ and s" he feasible strategies for player i (i.e., s\ and s" are members of 
Sj). Strategy s\ is strictly dominated by strategy s" if for each feasible 
combination of the other players' strategies, i's payoff from playing sj is 
strictly less than i's payoff from playing s": 

u,(si,.. . ,s,_i,sj,s,+i,.. . ,s„) < Ufa,...,s,-_i,s",si+l,...,s„) (DS) 

for each (s\...., s ,_i,s I + 1 , . . . , s„) that can be constructed from the other 
players' strategy spaces S\,..., S,-i, S,+i, . . . , S„. 

Rational players do not play strictly dominated strategies, be
cause there is no belief that a player could hold (about the strate
gies the other players will choose) such that it would be optimal 
to play such a strategy.1 Thus, in the Prisoners' Dilemma, a ratio
nal player will choose Fink, so (Fink, Fink) will be the outcome 
reached by two rational players, even though (Fink, Fink) results 
in worse payoffs for both players than would (Mum, Mum). Be
cause the Prisoners' Dilemma has many applications (including 
the arms race and the free-rider problem in the provision of pub
lic goods), we will return to variants of the game in Chapters 2 
and 4. For now, we focus instead on whether the idea that rational 
players do not play strictly dominated strategies can lead to the 
solution of other games. 

Consider the abstract game in Figure l.l.l.2 Player 1 has two 
strategies and player 2 has three: S\ = {Up, Down} and S2 = 
{Left, Middle, Right}. For player 1, neither Up nor Down is strictly 

'A complementary question is also of interest: if there is no belief that player i 
could hold (about the strategies the other players will choose) such that it would 
be optimal to play the strategy s„ can we conclude that there must be another 
strategy that strictly dominates s/? The answer is "yes," provided that we adopt 
appropriate definitions of "belief" and "another strategy," both of which involve 
the idea of mixed strategies to be introduced in Section 1.3.A. 

2Most of this book considers economic applications rather than abstract exam
ples, both because the applications are of interest in their own right and because, 
for many readers, the applications are often a useful way to explain the under
lying theory. When introducing some of the basic theoretical ideas, however, 
we will sometimes resort to abstract examples that have no natural economic 
interpretation. 
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Player 2 

Left M i d d l p R4o-V.t 

Player 1 
Up 

Down 

1,0 

0,3 

1,2 

0,1 

0,1 

2,0 

Figure 1.1.1. 

dominated: Up is better than Down if 2 plays Left (because 1 > 0), 
but Down is better than Up if 2 plays Right (because 2 > 0). For 
player 2, however, Right is strictly dominated by Middle (because 
2 > 1 and 1 > 0), so a rational player 2 will not play Right. 
Thus, if player 1 knows that player 2 is rational then player 1 can 
eliminate Right from player 2's strategy space. That is, if player 
1 knows that player 2 is rational then player 1 can play the game 
in Figure 1.1.1 as if it were the game in Figure 1.1.2. 

Player 2 

Left Middle 
. 1 

Player 1 
up 

Down 

rigure I.I.Z.. 

1,0 

0,3 

1,2 

0,1 

In Figure 1.1.2, Down is now strictly dominated by Up fQr 

player 1, so if player 1 is rational (and player 1 knows that play e r p 
is rational, so that the game in Figure 1.1.2 applies) then play e r i 
will not play Down. Thus, if player 2 knows that player 1 j s 

tional, and player 2 knows that player 1 knows that player 2 • 
rational (so that player 2 knows that Figure 1.1.2 applies), t^ 
player 2 can eliminate Down from player l 's strategy space, ie_ ** 
ing the game in Figure 1.1.3. But now Left is strictly dorrvirva.

V 

by Middle for player 2, leaving (Up, Middle) as the outcorn ^ 
the game. e °f 

This process is called iterated elimination of strictly dortii 
strategies. Although it is based on the appealing idea that Q!e£* 
nal players do not play strictly dominated strategies, the 
has two drawbacks. First, each step requires a further assurn°C e S s 
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Player 1 Up 

Player 2 

Left Middle 

1,0 1,2 

Figure 1.1.3. 

about what the players know about each other's rationality. If 
we want to be able to apply the process for an arbitrary number 
of steps, we need to assume that it is common knowledge that the 
players are rational. That is, we need to assume not only that all 
the players are rational, but also that all the players know that all 
the players are rational, and that all the players know that all the 
players know that all the players are rational, and so on, ad in
finitum. (See Aumann [1976] for the formal definition of common 
knowledge.) 

The second drawback of iterated elimination of strictly domi
nated strategies is that the process often produces a very impre
cise prediction about the play of the game. Consider the game in 
Figure 1.1.4, for example. In this game there are no strictly dom
inated strategies to be eliminated. (Since we have not motivated 
this game in the slightest, it may appear arbitrary, or even patho
logical. See the case of three or more firms in the Cournot model 
in Section 1.2.A for an economic application in the same spirit.) 
Since all the strategies in the game survive iterated elimination of 
strictly dominated strategies, the process produces no prediction 
whatsoever about the plav of the eame. 

T 

M 

1*1 

0 4 

4 0 • x , \J 

3 5 

4 0 

0 4 
< J , -X 

3.5 

5,3 

5 3 

6.6 

Figure 1.1.4. 

We turn next to Nash equilibrium—a solution concept that 
produces much tighter predictions in a very broad class of games. 
We show that Nash equilibrium is a stronger solution concept 
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than iterated elimirvatiorv of strictly dominated strategies, in the 
sense that the players' strategies in a Nash equilibrium always 
survive iterated elimination of strictly dominated strategies, but 
the converse is not true. In subsequent chapters we will argue that 
in richer games even Nash equilibrium produces too imprecise a 
prediction about the play of the game, so we will define still-
stronger notions of equilibrium that are better suited for these 
richer games. 

l.l.C Motivation and Definition of Nash Equilibrium 

One way to motivate the definition of Nash equilibrium is to argue 
that if game theory is to provide a unique solution to a game-
theoretic problem then the solution must be a Nash equilibrium, 
in the following sense. Suppose that game theory makes a unique 
prediction about the strategy each player will choose. In order 
for this prediction to be correct, it is necessary that each player be 
willing to choose the strategy predicted by the theory. Thus, each 
player's predicted strategy must be that player's best response 
to the predicted strategies of the other players. Such a prediction 
could be called strategically stable or self-enforcing, because no single 
player wants to deviate from his or her predicted strategy. We will 
call such a prediction a Nash equilibrium: 

Definition In the n-player normal-form gameG — {Si , . . . , S«; U\,... f 

u„}, the strategies (sj,... ,s*) are a Nash equilibrium if, for each player 
i, s* is (at least tied for) player i's best response to the strategies specified 
for then-I other players, (sj , . . . , s?_,, s*+1,..., s*): 

H1-(Sl,...,S*_1)S*,S/+1,...,S*) 

>u i(sj,...,sf_1,s /,sr+1,...,s*) (N£) 

for every feasible strategy s,- in S,-; that is, s* solves 

maxw1(st)...,sr_1,s1)s?+1,...,s*). 

To relate this definition to its motivation, suppose game theory 
offers the strategies (s',,... ,s,'r) as the solution to the normal-forrr, 
game G = {Sh...,S„;uu...,un}. Saying that (si , . . . A) i s n ° ' 
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a Nash equilibrium of G is equivalent to saying that there exists 
some player i such that s\ is not a best response to {s[,,..,s|,i, s|+1, 
...,s'n). That is, there exists some s" in S, such that 

W/(Si, • • • ,Sj_i,$j,Si+i,.. • ,S„) < Wi(Sj , . . . ,Sj_i,Sj , S I + 1 , . . . , S n ) . 

Thus, if the theory offers the strategies (s[,...,s'n) as the solution 
but these strategies are not a Nash equilibrium, then at least one 
player will have an incentive to deviate from the theory's predic
tion, so the theory will be falsified by the actual play of the game. 
A closely related motivation for Nash equilibrium involves the 
idea of convention: if a convention is to develop about how to 
play a given game then the strategies prescribed by the conven
tion must be a Nash equilibrium, else at least one player will not 
abide by the convention. 

To be more concrete, we now solve a few examples. Consider 
the three normal-form games already described—the Prisoners' 
Dilemma and Figures 1.1.1 and 1.1.4. A brute-force approach to 
finding a game's Nash equilibria is simply to check whether each 
possible combination of strategies satisfies condition (NE) in the 
definition.3 In a two-player game, this approach begins as follows: 
for each playeT, and for each feasible strategy for that player, deter
mine the other player's best response to that strategy. Figure 1.1.5 
does this for the game in Figure 1.1.4 by underlining the payoff 
to player /'s best response to each of player i's feasible strategies. 
If the column player were to play L, for instance, then the row 
player's best response would be M, since 4 exceeds 3 and 0, so 
the row player's payoff of 4 in the (M, L) cell of the bi-matrix is 
underlined. 

A pair of strategies satisfies condition (NE) if each player's 
strategy is a best response to the other's—that is, if both pay
offs are underlined in the corresponding cell of the bi-matrix. 
Thus, (B, R) is the only strategy pair that satisfies (NE); likewise 
for (Fink, Fink) in the Prisoners' Dilemma and (Up, Middle) in 

3ln Section 1.3.A we will distinguish between pure and mixed strategies. We 
will then see that the definition given here describes pure-strategy Nash equilibria, 
but that there can also be mixed-strategy Nash equilibria. Unless explicitly noted 
otherwise, all references to Nash equilibria in this section are to pure-strategy 
Nash equilibria. 



10 STATIC GAMES OF COMPLETE INFORMATION 

L C R 

0,4 

4,0 

3,5 

4,0 

0,4 

3,5 

5,3 

5,3 

6,6 

Figure 1.1.5. 

Figure 1.1.1. These strategy pairs are the unique Nash equilibria 
of these games.4 

We next address the relation between Nash equilibrium and 
iterated elimination of strictly dominated strategies. Recall that 
the Nash equilibrium strategies in the Prisoners' Dilemma and 
Figure 1.1.1—(Fink, Fink) and (Up, Middle), respectively—are the 
only strategies that survive iterated elimination of strictly domi
nated strategies. This result can be generalized: if iterated elimina
tion of strictly dominated strategies eliminates all but the strategies 
^ , . . . , s*), then these strategies are the unique Nash equilibrium of 
the game. (See Appendix 1.1.C for a proof of this claim.) Since it
erated elimination of strictly dominated strategies frequently does 
not eliminate all but a single combination of strategies, however, 
it is of more interest that Nash equilibrium is a stronger solution 
concept than iterated elimination of strictly dominated strategies, 
in the following sense. If the strategies 1s\,.. .,sJJ) are a Nash equi
librium then they survive iterated elimination of strictly domi
nated strategies (again, see the Appendix for a proof), but there 
can be strategies that survive iterated elimination of strictly dom
inated strategies but are not part of any Nash equilibrium. To see 
the latter, recall that in Figure 1.1.4 Nash equilibrium gives the 
unique prediction (B, R), whereas iterated elimination of strictly 
dominated strategies gives the maximally imprecise prediction: no 
strategies are eliminated; anything could happen. 

Having shown that Nash equilibrium is a stronger solution 
concept than iterated elimination of strictly dominated strategies, 
we must now ask whether Nash equilibrium is too strong a so
lution concept. That is, can we be sure that a Nash equilibrium 

4This statement is correct even if we do not restrict attention to pure-strategy 
Nash equilibrium, because no mixed-strategy Nash equilibria exist in these three 
games. See Problem 1.10. 
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exists? Nash (1950) showed that in any finite game (i.e., a game in 
which the number of players n and the strategy sets S i , . . . , S„ are 
all finite) there exists at least one Nash equilibrium. (This equi
librium may involve mixed strategies, which we will discuss in 
Section 1.3.A; see Section 1.3.B for a precise statement of Nash's 
Theorem.) Cournot (1838) proposed the same notion of equilib
rium in the context of a particular model of duopoly and demon
strated (by construction) that an equilibrium exists in that model; 
see Section 1.2.A. In every application analyzed in this book, we 
will follow Cournot's lead: we will demonstrate that a Nash (or 
stronger) equilibrium exists by constructing one. In some of the 
theoretical sections, however, we will rely on Nash's Theorem (or 
its analog for stronger equilibrium concepts) and simply assert 
that an equilibrium exists. 

We conclude this section with another classic example—The 
Battle of the Sexes. This example shows that a game can have mul
tiple Nash equilibria, and also will be useful in the discussions of 
mixed strategies in Sections 1.3.B and 3.2.A. In the traditional ex
position of the game (which, it will be clear, dates from the 1950s), 
a man and a woman are trying to decide on an evening's enter
tainment; we analyze a gender-neutral version of the game. While 
at separate workplaces, Pat and Chris must choose to attend either 
the opera or a prize fight. Both players would rather spend the 
evening together than apart, but Pat would rather they be together 
at the prize fight while Chris would rather they be together at the 
opera, as represented in the accompanying bi-matrix. 

Pat 

Opera Fight 

Chris 
Opera 

Fight 

2,1 

0,0 

0,0 

1,2 

The Battle of the Sexes 

Both (Opera, Opera) and (Fight, Fight) are Nash equilibria. 
We argued above that if game theory is to provide a unique 

solution to a game then the solution must be a Nash equilibrium-
This argument ignores the possibility of games in which game 
theory does not provide a unique solution. We also argued that 
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if a convention is to develop about how to play a given game, 
then the strategies prescribed by the convention must be a Nash 
equilibrium, but this argument similarly ignores the possibility of 
games for which a convention will not develop. In some games 
with multiple Nash equilibria one equilibrium stands out as the 
compelling solution to the game. (Much of the theory in later 
chapters is an effort to identify such a compelling equilibrium 
in different classes of games.) Thus, the existence of multiple 
Nash equilibria is not a problem in and of itself. In the Battle 
of the Sexes, however, (Opera, Opera) and (Fight, Fight) seem 
equally compelling, which suggests that there may be games for 
which game theory does not provide a unique solution and no 
convention will develop.5 In such games, Nash equilibrium loses 
much of its appeal as a prediction of play. 

Appendix l.l.C 

This appendix contains proofs of the following two Propositions, 
which were stated informally in Section l.l.C. Skipping these 
proofs will not substantially hamper one's understanding of later 
material. For readers not accustomed to manipulating formal def
initions and constructing proofs, however, mastering these proofs 
will be a valuable exercise. 

Proposition A In the n-player normal-form game G = {Si , . . . , Sn; 
Mi, • • • i Mn}/ if iterated elimination of strictly dominated strategies elimi
nates all but the strategies (s\,..., s*), then these strategies are the unique 
Nash equilibrium of the game. 

Proposition B In the n-player normal-form game G = {Si , . . . , S„; 
Mi,..., Mn}/ if the strategies (s J,..., s*) are a Nash equilibrium, then they 
survive iterated elimination of strictly dominated strategies. 

5In Section 1.3.B we describe a third Nash equilibrium of the Battle of the 
Sexes (involving mixed strategies). Unlike (Opera, Opera) and (Fight, Fight), this 
third equilibrium has symmetric payoffs, as one might expect from the unique 
solution to a symmetric game; on the other hand, the third equilibrium is also 
inefficient, which may work against its development as a convention. Whatever 
one's judgment about the Nash equilibria in the Battle of the Sexes, however, 
the broader point remains: there may be games in which game theory does not 
provide a unique solution and no convention will develop. 
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Since Proposition B is simpler to prove, we begin with it, to 
warm up. The argument is by contradiction. That is, we will as
sume that one of the strategies in a Nash equilibrium is eliminated 
by iterated elimination of strictly dominated strategies, and then 
we will show that a contradiction would result if this assumption 
were true, thereby proving that the assumption must be false. 

Suppose that the strategies (s\,... ,s*) are a Nash equilibrium 
of the normal-form game G = {Si,... ,Sn;Mi,..., u„}, but suppose 
also that (perhaps after some strategies other than (s\,.,., s*) have 
been eliminated) s* is the first of the strategies (s*,...,sJJ) to be 
eliminated for being strictly dominated. Then there must exist a 
strategy s" that has not yet been eliminated from S, that strictly 
dominates s*. Adapting (DS), we have 

U,(Si , . . . ,Sf_i,Sj ,S{ + i , . . . , S„ ) 

<u,(s1 , . . . ,s i_1 ,s[ ' ,s I + 1 , . . . ,s„) (1.1.1) 

for each (s i , . . . , s;_i, s,-+i,..., s„) that can be constructed from the 
strategies that have not yet been eliminated from the other players' 
strategy spaces. Since s* is the first of the equilibrium strategies to 
be eliminated, the other players' equilibrium strategies have not 
yet been eliminated, so one of the implications of (1.1.1) is 

Mj(Si, . . . ,S,_1,S |- , S | + 1 , . . . ,S„) 

<u,(sl,...,s*_1,s; ,,s*+1,...,s„). (1.1.2) 

But (1.1.2) is contradicted by (NE): s* must be a best response to 
(Si,...,s*_1,s*+1,...,s|j) / so there cannot exist a strategy s" that 
strictly dominates s*. This contradiction completes the proof. 

Having proved Proposition B, we have already proved part of 
Proposition A: all we need to show is that if iterated elimination 
of dominated strategies eliminates all but the strategies (s j , . . . ,s*) 
then these strategies are a Nash equilibrium; by Proposition B, any 
other Nash equilibria would also have survived, so this equilib
rium must be unique. We assume that G is finite. 

The argument is again by contradiction. Suppose that iterated 
elimination of dominated strategies eliminates all but the strategies 
(s*,... ,s*) but these strategies are not a Nash equilibrium. Then 
there must exist some player f and some feasible strategy s, in S, 
such that (NE) fails, but s, must have been strictly dominated by 
some other strategy s,' at some stage of the process. The formal 
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statements of these two observations are: there exists s, in S, such 
that 

u,-(s1,..., s,_1, s*, s*+1,..., s,*) 

< Ui{s\,... ,sLltshst+1,...,s*); d.i.3) 

and there exists s'{ in the set of player i's strategies remaining at 
some stage of the process such that 

W , ( s 1 , . . . , S , _ i , S f , S I + i , . . . , S „ ) 

<Mf(Si,...,Sf_1,SJ,SI+1,...,S„) (1.1.4) 

for each (s\,..., s,_i, s,-+i,... ,s„) that can be constructed from the 
strategies remaining in the other players' strategy spaces at that 
stage of the process. Since the other players' strategies (sf,..., s*_v 

s*+1,... ,s*) are never ehminated, one of the implications of (1.1.4) 
is 

";(s*,. • •, Sj_i, s;, s i+1,..., sn) 
<u,(st,...Js*_1,s;,sf+1,...,s*). (1.1.5) 

If s{- = s* (that is, if s* is the strategy that strictly dominates s,) then 
(1.1.5) contradicts (1.1.3), in which case the proof is complete. If 
s\ ̂  s* then some other strategy s" must later strictly dominate s\, 
since s[ does not survive the process. Thus, inequalities analogous 
to (1.1.4) and (1.1.5) hold with s- and s" replacing s, and s\, respec
tively. Once again, if s" = s* then the proof is complete; otherwise, 
two more analogous inequalities can be constructed. Since s* is 
the only strategy from S, to survive the process, repeating this 
argument (in a finite game) eventually completes the proof. 

1.2 Applications 

1.2.A Coumot Model of Duopoly 

As noted in the previous section, Cournot (1838) anticipated Nash's 
definition of equnibrium by over a century (but only in the con
text of a particular model of duopoly). Not surprisingly, Cournot's 
work is one of the classics of game theory; it is also one of the cor
nerstones of the theory of industrial organization. We consider a 
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very simple version of Cournof s model here, and return to vari
ations on the model in each subsequent chapter. In this section 
we use the model to illustrate: (a) the translation of an informal 
statement of a problem into a normal-form representation of a 
game; (b) the computations involved in solving for the game's 
Nash equilibrium; and (c) iterated elimination of strictly domi
nated strategies. 

Let a\ and qi denote the quantities (of a homogeneous product) 
produced by firms 1 and 2, respectively. Let P{Q) = a - Q be the 
market-clearing price when the aggregate quantity on the market 
is Q = c\\ + qi- (More precisely, P(Q) = a - Q for Q < a, and 
P{Q) = 0 for Q > a.) Assume that the total cost to firm i of 
producing quantity q{ is C,(^,) = cq,. That is, there are no fixed 
costs and the marginal cost is constant at c, where we assume 
c < a. Following Cournot, suppose that the firms choose their 
quantities simultaneously.6 

In order to find the Nash equilibrium of the Cournot game, 
we first translate the problem into a normal-form game. Recall 
from the previous section that the normal-form representation of 
a game specifies: (1) the players in the game, (2) the strategies 
available to each player, and (3) the payoff received by each player 
for each combination of strategies that could be chosen by the 
players. There are of course two players in any duopoly gamê — 
the two firms. In the Cournot model, the strategies available to 
each firm are the different quantities it might produce. We will 
assume that output is continuously divisible. Naturally, negative 
outputs are not feasible. Thus, each firm's strategy space can be 
represented as S,- = [0, oo), the nonnegative real numbers, in which 
case a typical strategy s, is a quantity choice, <?, > 0. One could 
argue that extremely large quantities are not feasible and so should 
not be included in a firm's strategy space. Because P(Q) = 0 for 
Q > a, however, neither firm will produce a quantity q, > a. 

It remains to specify the payoff to firm i as a function of the 
strategies chosen by it and by the other firm, and to define and 

6We discuss Bertrand's (1883) model, in which firms choose prices rather than 
quantities, in Section 1.2.B, and Stackelberg's (1934) model, in which firms choose 
quantities but one firm chooses before (and is observed by) the other, in Sec
tion 2.I.B. Finally, we discuss Friedman's (1971) model, in which the interaction 
described in Coumot's model occurs repeatedly over time, in Section 2.3.C 
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solve for equilibrium. We assume that the firm's payoff is simply 
its profit. Thus, the payoff Kj(s,-,S/) in a general two-player game 
in normal form can be written here as7 

M%%) = <HlP((li + ?;) - c) = iM ~ fa + 1j) ~ cl-

Recall from the previous section that in a two-player game in nor
mal form, the strategy pair foVsf) is a Nash equilibrium if, for 
each player i, 

M,-(s;,s;)>«f(sf,s;) (NE) 
for every feasible strategy Sj in S,. Equivalently, for each player i, 
s* must solve the optimization problem 

max UJ(SJ,S?). 

In the Cournot duopoly model, the analogous statement is that 
the quantity pair {q\,qD*s a N a s h equilibrium if, for each firm i, 
q* solves 

max Vi{qi,qJ)= max qt[a- fa,-+ qj) - c]. 
0<qi<°o ' 0<qt<oo 

Assuming qj < a - c (as will be shown to be true), the first-order 
condition for firm i's optimization problem is both necessary and 
sufficient; it yields 

cii=\(a-qj-c). (1-2.1) 

Thus, if the quantity pair ( f t f ,^) i s t 0 ^ e a Nash equilibrium, the 
firms' quantity choices must satisfy 

and 

7Note that we have changed the notation slightly by writing UJ(SJ,SJ) rather 
than u,(s,,s2). Both expressions represent the payoff to player i as a function of 
the strategies chosen by all the players. We wilJ use these expressions (and their 
n-player analogs) interchangeably. 
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Solving this pair of equations yields 

which is indeed less than a - c, as assumed. 
The intuition behind this equilibrium is simple. Each firm 

would of course like to be a monopolist in this market, in which 
case it would choose q\ to maximize 7r,-(g,-,0)—it would produce 
the monopoly quantity qm — [a - c)/2 and earn the monopoly 
profit 7Ti{qm 0) = (a - c ) 2 /4 . Given that there are two firms, aggre
gate profits for the duopoly would be maximized by setting the 
aggregate quantity q\ + qi equal to the monopoly quantity qm, as 
would occur if g, = qm/2 for each i, for example. The problem 
with this arrangement is that each firm has an incentive to devi
ate: because the monopoly quantity is low, the associated price 
P{qm) is high, and at this price each firm would like to increase its 
quantity, in spite of the fact that such an increase in production 
drives down the market-clearing price. (To see this formally, use 
(1.2.1) to check that qm/2 is not firm 2's best response to the choice 
of qmll by firm 1.) In the Cournot equilibrium, in contrast, the ag
gregate quantity is higher, so the associated price is lower, so the 
temptation to increase output is reduced—reduced by just enough 
that each firm is just deterred from increasing its output by the 
realization, that the market-clearing price will fall. See Problem 1.4 
for an analysis of how the presence of n oligopolists affects this 
equilibrium trade-off between the temptation to increase output 
and the reluctance to reduce the market-clearing price. 

Rather than solving for the Nash equilibrium in the Cournot 
game algebraically, one could instead proceed graphically, as fol
lows. Equation (1.2.1) gives firm i's best response to firm ;'s 
equilibrium strategy, q*. Analogous reasoning leads to firm 2's 
best response to an arbitrary strategy by firm 1 and firm I's best 
response to an arbitrary strategy by firm 2. Assuming that firm I's 
strategy satisfies q\ < a - c, firm 2's best response is 

likewise, if q2 < a - c then firm I's best response is 
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(0,a-c) 

(0,(<i-c)/2) 

((a-c)/2,0) (a-c,0) <?i 

Figure 1.2.1. 

As shown in Figure 1.2.1, these two best-response functions inter
sect only once, at the equilibrium quantity pair (q^q^)-

A third way to solve for this Nash equilibrium is to apply 
the process of iterated elimination of strictly dominated strategies. 
This process yields a unique solution—which, by Proposition A 
in Appendix 1.1.C, must be the Nash equilibrium (q^q^)- The 
complete process requires an infinite number of steps, each of 
which eliminates a fraction of the quantities remaining in each 
firm's strategy space; we discuss only the first two steps. First, the 
monopoly quantity qm = (a - c)/2 strictly dominates any higher 
quantity. That is, for any x > 0, 7r,-(gm,fy) > 7r,-(gm + x,qj) for all 
fy > 0. To see this, note that if Q = q„, + x + qj < a, then 

Ki{qm,qj) = a-c a-c 
'/; 

and 

ir>{qm + M/ ) = 
a-c + x a-c -x-qj 

and if Q = qm + x + qi > a, then P(Q) = 0, so producing a smaller 
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quantity raises profit. Second, given that quantities exceeding qm 

have been eliminated, the quantity (a - c)/4 strictly dominates 
any lower quantity. That is, for any x between zero and (a - c)/4, 
7r,-[(fl - c)/4,ty] > irj[(a - c)/4 - XtCjj] for all qj between zero and 
(fl _ c)/2. To see this, note that 

a-c \ a-c 3(« - c) 
% 

and 

Ki 
a-c 

-x,qj = 
a-c 

-x 
3{a - c) 

T/fam,<?;) -* 
a-c + x-q} 

After these two steps, the quantities remaining in each firm's 
strategy space are those in the interval between (a - c)/4 and 
(a - c)/2. Repeating these arguments leads to ever-smaller inter
vals of remaining quantities. In the limit, these intervals converge 
to the single point q* = (a - c)/3. 

Iterated elimination of strictly dominated strategies can also be 
described graphically, by using the observation (from footnote 1; 
see also the discussion in Section 1.3.A) that a strategy is strictly 
dominated if and only if there is no belief about the other players' 
choices for which the strategy is a best response. Since there are 
only two firms in this model, we can restate this observation as: 
a quantity qx is strictly dominated if and only if there is no belief 
about qj such that qi is firm i's best response, We again discuss only 
the first two steps of the iterative process. First, it is never a best 
response for firm i to produce more than the monopoly quantity, 
qm = {a-c)/I. To see this, consider firm 2's best-response function, 
for example: in Figure 1.2.1, #2(^1) equals qm when q\ = 0 and 
declines as q\ increases. Thus, for any qj > 0, if firm i believes 
that firm j will choose q>, then firm i's best response is less than or 
equal to qm; there is no qj such that firm i's best response exceeds 
qm- Second, given this upper bound on firm ;'s quantity, we can 
derive a lower bound on firm i's best response: if qj < {a - c)/2, 
then Ri(qj) > (a - c)/4, as shown for firm 2's best response in 
Figure I.2.2.8 

These two arguments are slightly incomplete because we have not analyzed 
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« / . • 

((«-c)/2,0) (a-c,0) 

Figure 1.2.2. 

As before, repeating these arguments leads to the single quantity 

# = (- " c)A 
We conclude this section by changing the Cournot model so 

that iterated elimination of strictly dominated strategies does not 
yield .1 unique solution. To do this, we simply add one or more 
firms to the existing duopoly. We will see that the first of the 
two steps discussed in the duopoly case continues to hold, but 
that the process ends there. Thus, when there arc more than two 
firms, iterated elimination of strictly dominated strategies yields 
only the imprecise prediction that each firm's quantity will not 

eed the monopoly quantity (much as in Figure 1.1.4, where no 
strategies were eliminated by this process). 

For concreteness, we consider the three-firm case. Let Q.., 
denote the sum of the quantities chosen by the firms other than 
i, and let rr,(.j,,Q j) </,(« <h - Q-i - c) provided qs + Q_, < a 

''/.• U '/; Q-i > a)- It is again true that the 
onopoly quantity (/,„ ~ {a -c)/2 strictly dominates any higher 

I" • 0, itj{qmQ-i) > itiiqm + x,Q_/) for 
the first step in the duopoly case. Since 

uncertain about qr Suppose firm i is uncertain 
value "I </, is E((j/). Because ni(q,,qj) is 
ii LB I (rtain in this way simply equals 

n that firm | will i hoose E(fy)—a case covered 

(0,U-c)/2) 

(0,(a-c)/4) 
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there are two firms other than firm i, however, all we can say 
about Q-i is that it is between zero and a - c, because q; and qk 

are between zero and (a - c)/2. But this implies that no quantity 
qt > 0 is strictly dominated for firm i, because for each qx between 
zero and (a - c)/2 there exists a value of Q_; between zero and 
a - c (namely, Q-i ~a-c- 2qi) such that q{ is firm i's best response 
to Q-i- Thus, no further strategies can be eliminated. 

1.2.B Bertrand Model of Duopoly 

We next consider a different model of how two duopolists might 
interact, based on Bertrand's (1883) suggestion that firms actu
ally choose prices, rather than quantities as in Cournot/ s model. 
It is important to note that Bertrand's model is a different game 
than Cournot's model: the strategy spaces are different, the pay
off functions are different, and (as will become clear) the behavior 
in the Nash equilibria of the two models is different. Some au
thors summarize these differences by referring to the Cournot and 
Bertrand equilibria. Such usage may be misleading: it refers to the 
difference between the Cournot and Bertrand games, and to the 
difference between the equilibrium behavior in these games, not 
to a difference in the equilibrium concept used in the games. In 
both games, the equilibrium concept used is the Nash equilibrium defined 
in the previous section. 

We consider the case of differentiated products. (See Prob
lem 1.7 for the case of homogeneous products.) If firms 1 and 2 
choose prices p\ and pi, respectively, the quantity that consumers 
demand from firm i is 

where b > 0 reflects the extent to which firm i's product is a sub
stitute for firm ;'s product. (This is an unrealistic demand function 
because demand for firm i's product is positive even when firm i 
charges an arbitrarily high price, provided firm; also charges a 
high enough price. As will become clear, the problem makes sense 
only if b < 2.) As in our discussion of the Cournot model, we as
sume that there are no fixed costs of production and that marginal 
costs are constant at c, where c < a, and that the firms act (i.e., 
choose their prices) simultaneously. 

As before, the first task in the process of finding the Nash equi
librium is to translate the problem into a normal-form game. There 
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are again two players. This time, however, the strategies available 
to each firm are the different prices it might charge, rather than 
the different quantities it might produce. We will assume that 
negative prices are not feasible but that any nonnegative price can 
be charged—there is no restriction to prices denominated in pen
nies, for instance. Thus, each firm's strategy space can again be 
represented as S, = [0,oo), the nonnegative real numbers, and a 
typical strategy s, is now a price choice, p,- > 0. 

We will again assume that the payoff function for each firm is 
just its profit. The profit to firm i when it chooses the price pj and 
its rival chooses the price p, is 

*i(p»Pj) = (fi(PhPj)\Pi - c ] = ffl - Pi + bpj]\pi - c). 

Thus, the price pair (ft , # ) is a Nash equilibrium if, for each firm i, 
p* solves 

max 7r,-(p,-,p*)= max [a - p, + bpf]\p, - c). 
0<p,<oo ' Q<pi<co ' 

The solution to firm i's optimization problem is 

p-^l(a + bp*+c). 

Therefore, it the price pair (p\,p{) is to be a Nash equilibrium, the 
firms' price choices must satisfy 

p\ = -(a + bp*2+c) 

and 

Solving this pair of equations yields 

, a + c 
P^Pz = Y~o-

1.2.C Final-Offer Arbitration 

Many public-sector workers are forbidden to strike; instead, wage 
disputes are settled by binding arbitration. (Major league base-
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ball may be a higher-profile example than the public sector but is 
substantially less important economically.) Many other disputes, 
including medical malpractice cases and claims by shareholders 
against their stockbrokers, also involve arbitration. The two ma
jor forms of arbitration are conventional and final-offer arbitration. 
In final-offer arbitration, the two sides make wage offers and then 
the arbitrator picks one of the offers as the settlement. In con
ventional arbitration, in contrast, the arbitrator is free to impose 
any wage as the settlement. We now derive the Nash equilib
rium wage offers in a model of final-offer arbitration developed 
by Farber (1980),9 

Suppose the parries to the dispute are a firm and a union and 
the dispute concerns wages. Let the timing of the game be as 
follows. First, the firm and the union simultaneously make offers, 
denoted by Wf and wU/ respectively. Second, the arbitrator chooses 
one of the two offers as the settlement. (As in many so-called static 
games, this is really a dynamic game of the kind to be discussed 
in Chapter 2, but here we reduce it to a static game between the 
firm and the union by making assumptions about the arbitrator's 
behavior in the second stage.) Assume that the arbitrator has an 
ideal settlement she would like to impose, denoted by x. Assume 
further that, after observing the parties' offers, Wf and wu, the 
arbitrator simply chooses the offer that is closer to r. provided 
that Wf < wu (as is intuitive, and will be shown to be true), the 
arbitrator chooses Wf if x < (Wf + wu)/2 and chooses wu if x > 
(wf + wu)/2; see Figure 1.2.3. (It will be immaterial what happens 
if x = (uif + wu)/2. Suppose the arbitrator flips a coin.) 

The arbitrator knows x but the parties do not. The parties 
believe that x is randomly distributed according to a cumulative 
probability distribution denoted by F(x), with associated prob
ability density function denoted by f(x)}° Given our specifi
cation of the arbitrator's behavior, if the offers are Wf and wu 

This application involves some basic concepts in probability: a cumulative 
probability distribution, a probability density function, and an expected value. 
Terse definitions are given as needed; for more detail, consult any introductory 
probability text. 

''"That is, the probability that x is less than an arbitrary value x' is denoted 
F(x'), and the derivative of this probability with respect to x' is denoted /(x*). 
Since F(x") is a probability, we have 0 < F(x~) < 1 for any x'. Furthermore, if 
x" > x- then Fix", > F(x'), sof{x') > 0 for every x". 
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hosen w„ chosen 

w, IV. 

(Wf + wJ/2 

Figure 1.2.3. 

. believe that the probabilities Prob\u>f chosen} and 
Prob{ww chosen} can be expressed as 

Problay chosen} = Prob {* < ̂ } = F p ± ^ ) 

and 

Prob{zu„ chosen} = I - F (™f W" 

••xpected wage settlement is 

"-'/ ! wu-?rob{w„ chosen) 

I V )+*' P( 2-)\ t + » 

e the expected wag*' 
I by the ai union wants to max-
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If the pair of offers (w'f ,w*u) is to be a Nash equilibrium of the 

game between the firm and the union, wj must solve" 

win wr • F 

and w* must solve 

m a x Wt • F 

'wf +w"u 

wj + wu 

+<• \-F 
'Wf+W*u 

(wl +wu\] 
+ Wu. i _ F l - X _ — J . 

Thus, the wage-offer pair (wj,w't) must solve the first-order con
ditions for these optimization problems, 

and 

i * *s 1 Jwf+< (Wf+< 
=F{ 

i-f(l±^ 
(We defer considering whether these first-order conditions are suf
ficient.) Since the left-hand sides of these first-order conditions are 
equal, the right-hand sides must also be equal, which implies that 

rw/ + < 1 
2 ; (1.2.2) 

that is, the average of the offers must equal the median of the 
arbitrator's preferred settlement. Substituting (1.2.2) into either of 
the first-order conditions then yields 

w'u - wl --
1 

/-,(«£!)' 
(1.2.3) 

that is, the gap between the offers must equal the reciprocal of 
the value of the density function at the median of the arbitrator's 
preferred settlement. 

"In formulating the firm's and the union's optimization problems, we have 
assumed that the firm's offer is less than the union's offer. It is straightforward 
to show that this inequality must hold in equilibrium. 
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In order to produce an intuitively appealing comparative-static 
result, we now consider an I Suppose the arbitrator's pre
ferred settJemc irmally distributed with mean m and vari
ance a1, in '.-.•! *jr h case the density function is 

f W = ^ e x p { -^- m ) 2 } 
'.vv that the first-order conditions given 

ttxieflt.) Becau distribution is symmetric 
around its mean, the median of the distribution equals the mean 
of the distribution^ w. Therefore, n .2.2) becomes 

; , - =m 

and (1.2.3) becomes 

' f(m) 

•<> the Nash equilibrium offers are 

u ' . w + W-x- and ! = m 

, in equilibrium, the parties' offers are centered around the 
tarion of the arbitn • d settlement (i.e., /n), and 

iween the off eases with the parties' uncertainty 
ired settlement (i.e., a2). 

equilibrium is simple. Each party 
iff. A moj " offei (i.e., a lower offer by 

ghei offer by the union) yields a better payoff if 
p the arbitrator but is less likely 

will see in Chapter 3 that a similar trade-off 
arise- I bid auction: a lower bid yields a 
better payoff if it is the wn J but reduces the chances of 

uncertainty about the arbitrator's 
,, the parties can afford to 

• .-.IV offer is less likely to be 
preferred settlement. When 
w .,!, neither party can afford 

because the arbitrator is very 
close torn. 
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1.2.D The Problem of the Commons 

Since at least Hume (1739), political philosophers and economists 
ha ire understood that if citizens respond only to private incentives, 
public goods will be underprovided and public resources overuti-
lized. Today, even a casual inspection of the earth's environment 
reveals the force of this idea. Hardin's (1968) much cited paper 
brought the problem to the attention of noneconomists. Here we 
analyze a bucolic example. 

Consider the n farmers in a village. Each summer, all the 
farmers graze their goats on the village green. Denote the number 
of goats the Ith farmer owns by g\ and the total number of goats 
in the village by G = gi H V gn. The cost of buying and caring 
for a goat is c, independent of how many goats a farmer owns. 
The value to a farmer of grazing a goat on the green when a 
total of G goats are grazing is u(G) per goaf. Since a goat needs 
at least a certain amount of grass in order to survive, there is 
a maximum number of goats that can be grazed on the green, 
Gmax: »(G) > 0 for G < G^x but z>(G) = 0 for G > Gmax. Also, 
since the first few goats have plenty of room to graze, adding one 
more does little harm to those already grazing, but when so many 
goats are grazing that they are all just barely surviving (i.e., G is 
just below Gmax)/ then adding one more dramatically harms the 
rest. Formally: for G < G^r/iG) < 0 and v"{G) < 0, as in 
Figure 1.2.4. 

During the spring, the farmers simultaneously choose how 
many goats to own. Assume goats are continuously divisible. 
A strategy for farmer / is the choice of a number of goats to 
graze on the village green, g\. Assuming that the strategy space 
is [0, co) covers all the choices that could possibly be of interest 
to the farmer; [0, Gmax) would also suffice. The payoff to farmer i 
from grazing gt goats when the numbers of goats grazed by the 
other farmers are ( # , . . . ,g/-i,g/+i, - - • ,£«) is 

£/»(#+••• +#~i + gi + gi+i + ~'+gn)~ cgi. (1.2.4) 

I hus, if (g*,,.. ,gJJ) is to be a Nash equilibrium then, for each f„ 
,'<, must maximize (1.2.4) given that the other farmers choose 
^'| $ i i #*-H '" • »£«)• ^ e first-order condition for this opti
mization problem is 

vigi +g~i)+giv'(gi+gli) ~c = 0, (1.2.5) 
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i - c = 0, (1.2.6) 

denotes*; + • • + & ta contrast, the social optimum, 

i) - Gc, 
0<G 

the I h is 

I = 0. (1.2.7) 

i 2.7) shows12 that G* > C'*: too many 
Nash equilibrium, compared to the social 

ier condition (1.2.5) reflects the incentives 
ig gi goats but is consider-

12Suppose, i. Then p(G') > i»(G**), since xf < 0. 
[y, G' /n < G" . Thus, the 

hand side of (1.2.7), which is 
impov 
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ing adding one more (or, strictly speaking, a tiny fraction of one 
more). The value of the additional goat is v(gj +g l , ) and its cost 
is c. The harm to the farmer's existing goats is i/(gi+gl,-) per goat, 
or giv'igi +&-i) m total. The common resource is overutilized be
cause each farmer considers only his or her own incentives, not 
the effect of his or her actions on the other farmers, hence the 
presence of G'v'(G')/n in (1.2.6) but G**y'(G") in (1.2.7), 

1.3 Advanced Theory: Mixed Strategies and 
Existence of Equilibrium 

1.3.A Mixed Strategies 

In Section l.l.C we defined S, to be the set of strategies available 
to player i, and the combination of strategies (s*,... ,s") to be a 
Nash equilibrium if, for each player /, s* is player i's best response 
to the strategies of the n - 1 other players: 

ut{s\ sf_i,s;, s*+],...,s*)>Uf(sf,...,s*_i,S|,sf+1 s*) (NE) 

for every strategy s, in S,. By this definition, there is no Nash 
equilibrium in the following game, known as Matching Pennies. 

Player 2 

Heads Tails 

Player 1 
Heads 

Tails 

- 1 , 1 

1,-1 

1,-1 

- 1 , 1 

Matching Pennies 

In this game, each player's strategy space is {Heads, Tails}. As 
a story to accompany the payoffs in the bi-matrix, imagine that 
each player has a penny and must choose whether to display it 
with heads or tails facing up. If the two pennies match (i.e., both 
are heads up or both are tails up) then player 2 wins player I's 
penny; if the pennies do not match then 1 wins 2's penny. No 
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pair of strategies can satisfy (NE), since if the players' strategies 
match~(Heads, Heads) or (Tails, Tails)—then player 1 prefers to 
switch strategies, while if the strategies do not match—(Heads, 
Tails) or (Tails, Heads)—then player 2 prefers to do so. 

The distinguishing feature of Matching Pennies is that each 
player would like to outguess the other. Versions of this game also 
arise in poker, baseball, battle, and other settings. In poker, the 
analogous question is how often to bluff: if player i is known never 
to bluff then i's opponents will fold whenever i bids aggressively, 
thereby making it worthwhile for i to bluff on occasion; on the 
other hand, bluffing too often is also a losing strategy. In baseball, 
suppose that a pitcher can throw either a fastball or a curve and 
that a batter can hit either pitch if (but only if) it is anticipated 
correctly. Similarly, in battle, suppose that the attackers can choose 
between two locations (or two routes, such as "by land or by sea") 
and that the defense can parry either attack if (but only if) it is 
anticipated correctly 

In any game in which each player would like to outguess the 
other(s), there is no Nash equilibrium (at least as this equilib
rium concept was defined in Section 1.1.C) because the solution 
to such a game necessarily involves uncertainty about what the 
players will do. We now introduce the notion of a mixed strategy, 
which we will interpret in tenns of one player's uncertainty about 
what another player will do. (This interpretation was advanced 
by Harsanyi [19731; we discuss it further in Section 3.2.A.) In the 
next section we will extend the definition of Nash equilibrium 
to include mixed strategies, thereby capturing the uncertainty in
herent in the solution to games such as Matching Pennies, poker, 
baseball, and battle. 

Formally, a mixed strategy for player i is a probability distri
bution over (some or all of) the strategies in S,. We will hereafter 
refer to the strategies in S,- as player i's pure strategies. In the 
simultaneous-move games of complete information analyzed in 
this chapter, a player's pure strategies are the different actions the 
player could take. In Matching Pennies, for example, S, consists 
of the two pure strategies Heads and Tails, so a mixed strategy 
for player i is the probability distribution {q, 1 - q), where q is 
the probability of playing Heads, 1 -q is the probability of play
ing Tails, and 0 < <j < 1. The mixed strategy (0,1) is simply the 
pure strategy Tails; likewise, the mixed strategy (1,0) is the pure 
strategy Heads. 
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As a second example of a mixed strategy, recall Figure 1.1.1, 
where player 2 has the pure strategies Left, Middle, and Right. 
Here a mixed strategy for player 2 is the probability distribution 
(q, r, 1 - q - r), where q is the probability of playing Left, r is the 
probability of playing Middle, and 1 - q - r is the probability of 
playing Right. As before, 0 < q < 1, and now also 0 < r < 1 and 
0<q + r <l. In this game, the mixed strategy (1/3,1/3,1/3) puts 
equal probability on Left, Middle, and Right, whereas (1/2,1/2,0) 
puts equal probability on Left and Middle but no probability on 
Right. As always, a player's pure strategies are simply the lim
iting cases of the player's mixed strategies—here player 2's pure 
strategy Left is the mixed strategy (1,0,0), for example. 

More generally, suppose that player i has K pure strategies: 
Si = {Sji,...,SjK}. Then a mixed strategy for player i is a prob
ability distribution (fti».. • > ftx)/ where p,/c is the probability that 
player i will play strategy s^, for k = 1 , . . . , K. Since p^ is a proba
bility, we require 0 < p& < 1 for k = 1 , . . . ,K and pix + \-piK = ^-
We will use p,- to denote an arbitrary mixed strategy from the set 
of probability distributions over S,-, just as we use s, to denote an 
arbitrary pure strategy from S,-. 

Definition In the normal-form game G = {Si , . . . , S„; u\,..., u„}, sup
pose Si = {s,i,.. • ,SJK}. Then a mixed strategy for player its a probability 
distribution p; = ( p n , . . . , PJK), where 0 < pik < 1 for k = 1 , . . . , K and 
Pi\ + --- + PiK = 1~ 

We conclude this section by returning (briefly) to the notion of 
strictly dominated strategies introduced in Section l.l.B, so as to 
illustrate the potential roles for mixed strategies in the arguments 
made there. Recall that if a strategy Sj is strictly dominated then 
there is no belief that player i could hold (about the strategies 
the other players will choose) such that it would be optimal to 
play Sj. The converse is also true, provided we allow for mixed 
strategies: if there is no belief that player i could hold (about 
the strategies the other players will choose) such that it would be 
optimal to play the strategy s„ then there exists another strategy 
that strictly dominates s,. The games in Figures 1.3.1 and 1.3.2 

13Pearce (1984) proves this result for the two-player case and notes that it holds 
for the n-player case provided that the players' mixed strategies are allowed to be 
correlated—that is, player i's belief about what player; will do must be allowed 
to be correlated with i's belief about what player k will do. Aumann (1987) 



STATIC GAMES OF COMPLETE INFORMATIOS 

Player 2 

L R 

T 

Player 1 M 

B 

3 , -

0 , ~ 

1,— 

0,— 

3 , — 

1,— 

Figure 1.3.1. 

show that this converse would be false if we restricted attention 
to pure strategies. 

Figure 1.3.1 shows that a given pure strategy may be strictly 
dominated by a mixed strategy even if the pure strategy is not 
strictly dominated by any other pure strategy. In this game, for 
any belief (q. 1 -a) that player \ could hold about 2's play, l 's best 
response is either T (if q > 1/2) or M (if q < 1/2), but never B. 
Yet B is not strictly dominated by either T or M. The key is that 
8 is strictly dominated by a mixed strategy: if player 1 plays 7 
with probability 1/2 and M with probability 1/2 then l 's expected 
payoff is 3/2 no matter what (pure or mixed) strategy 2 plays, and 
3/2 exceeds the payoff of 1 that playing B surely produces. This 
example illustrates the role of mixed strategies in finding "another 
strategy that strictly dominates s,." 

Player 2 

L R 

Player 1 M 

B 

Figure 1.3.2. 

3 , -

0,— 

2,— 

0,— 

3,— 

2 , -

suggests that such correlation in r's beliefs is entirely natural, even if j and k 
make their choices completely independently: for example, i may know that 
both / and k went hoci, or perhaps to the same business school 
but may not know what is taught there. 
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Figure 1-3.2 shows that a given pure strategy can be a best 
response to a mixed strategy, even if the pure strategy is not a 
best response to any other pure strategy. In this game, B is not a 
best response for player 1 to either L or R by player 2, but B is 
the best response for player 1 to the mixed strategy \q.\ - q) by 
player 2, provided 1/3 < q < 2/3. This example illustrates the role 
of mixed strategies in the "belief that player i could hold." 

1.3.B Existence of Nash Equilibrium 

In this section we discuss several topics related to the existence of 
Nash equilibrium. First, we extend the definition of Nash equi
librium given in Section 1.1 .C to allow for mixed strategies. Sec
ond, we apply this extended definition to Matching Pennies and 
the Battle of the Sexes. Third, we use a graphical argument to 
show that any two-player game in which each player has two 
pure strategies has a Nash equilibrium (possibly involving mixed 
strategies). Finally, we state and discuss Nash's (1950) Theorem, 
which guarantees that any finite game (i.e., any game with a fi
nite number oi players, each of whom has a finite number of 
pure strategies) has a Nash equilibrium (again, possibly involving 
mixed strategies). 

Recall that the definition of Nash equilibrium given in Section 
2.1.C guarantees that each player's pure strategy is a best response 
to the other players' pure strategies. To extend the definition to in
clude mixed strategies, we simply require that each player's mixed 
strategy be a best response to the other players' mixed strategies. 
Since any pure strategy can be represented as the mixed strategy 
that puts zero probability on all of the player's other pure strate
gies, this extended definition subsumes the earlier one. 

Computing player i's best response to a mixed strategy by 
player ;' illustrates the interpretation of player fs mixed strategy 
as representing player fs uncertainty about what player ;' will do. 
We begin with Matching Pennies as an example. Suppose that 
player 1 believes that player 2 will play Heads with probability q 
and Tails with probability 1 - q; that is, 1 believes that 2 will play 
the mixed strategy (q, 1 -q). Given this belief, player l 's expected 
payoffs are q • (-1) + (1 - q) • 1 = 1 - 2q from playing Heads and 
q• 1 + (1 - q ) • (-1) = 2q-1 from playing Tails. Since \-2q>2q-l 
if and only if q < 1/2, player l 's best pure-strategy response is 
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Heads if q < 1/2 and Tails if q > 1/2, and player 1 is indifferent 
between Heads and Tails if q = 1/2. It remains to consider possible 
mixed-strategy responses by player 1. 

Let (/, 1 - r) denote the mixed strategy in which player 1 plays 
Heads with probability r. For each value of q between zero and 
one, we now compute the value(s) of r, denoted r*(q), such that 
(r, 1 - r) is a best response for player 1 to (q,1 - q) by player 2. 
The results are summarized in Figure 1.3.3. Player l 's expected 
payoff from playing (r, 1 - r) when 2 plays (q, 1 - q) is 

rq • (-1) + r(l - q) • 1 + (1 - r)q • 1 + (1 - r)(l - q) • ( -1) 

= ( 2 g - l ) + r ( 2 - 4 g ) , (1.3.1) 

where rq is the probability of (Heads, Heads), r(l —q) the probabil
ity of (Heads, Tails), and so on.14 Since player l 's expected payoff 
is increasing in r if 2 - 4<? > 0 and decreasing in r if 2 — 4q < 0, 
player l's best response is r = 1 (i.e., Heads) if q < 1/2 and r = 0 
(i.e., Tails) if q > 1/2, as indicated by the two horizontal segments 
of r*{q) in Figure 1.3.3. This statement is stronger than the closely 
related statement in the previous paragraph: there we considered 
only pure strategies and found that if q < 1/2 then Heads is the 
best pure strategy and that if q > 1/2 then Tails is the best pure 
strategy; here we consider all pure and mixed strategies but again 
find that if tj < 1/2 then Heads is the best of all (pure or mixed) 
strategies and that if q > 1/2 then Tails is the best of all strategies. 

The nature of player l's best response to (q, 1 — q) changes 
when q = 1/2. As noted earlier, when q — 1/2 player 1 is indif
ferent between the pure strategies Heads and Tails. Furthermore, 
because player l's expected payoff in (1.3.1) is independent of r 
when q = 1/2, player 1 is also indifferent among all mixed strate
gies (r,l - r). That is, when q = 1/2 the mixed strategy (r, 1 - >•) 

l4The events A and B are independent if Prob{A and B} = Prob{A}Prob{B}. 
Thus, in writing rq for the probability that 1 plays Heads and 2 plays Heads, 
we are assuming that 1 and 2 make their choices independently, as befits the 
description we gave of simultaneous-move games. See Aumann (1974) for the 
definition of correlated equilibrium, which applies to games in which the players' 
choices can be correlated (because the players observe the outcome of a random 
event, such as a coin flip, before choosing their strategies). 
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(Heads) 1 

(Tails) 
1/2 1 q 

(Tails) (Heads) 

Figure 1.3.3. 

is a best response to (9,1 - q) for any value of r between zero 
and one. Thus, r*(l/2) is the entire interval [0,1], as indicated 
by the vertical segment of r*{q) in Figure 1.3.3. In the analysis 
of the Cournot model in Section 1.2.A, we called R^qj) firm i's 
best-response function. Here, because there exists a value of q 
such that r*(q) has more than one value, we call r*(q) player l's 
best-response correspondence. 

To derive player i's best response to player j's mixed strategy 
more generally, and to give a formal statement of the extended def
inition of Nash equilibrium, we now restrict attention to the two-
player case, which captures the main ideas as simply as possible. 
Let / denote the number of pure strategies in Si and K the number 
in S2. We will write Si = {su,..., Si/} and S2 = {s2i, •.., S2K}, and 
we will use Sy and s^ to denote arbitrary pure strategies from Si 
and S2, respectively. 

If player 1 believes that player 2 will play the strategies (s2 1 , . . . , 
S2K) with the probabilities (p2 J , . . . , pw) then player l 's expected 
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Given Pi(pi,p2) an-d u2(PiiP2) we can restate the requirement of 
Nash equilibrium thai each player's mixed strategy be a besl re 
Sponse to the other player's mixed strategy: for the pair of mixed 
strategies (p\ p*2) to be a Nash equilibrium, p\ must satisfy 

*>i(pI,P2)>Vl(Pl.p2) P-3-4) 

for every probability distribution />i over Si, and p2 must satisfy 

V2(P?,P2*)>^2(P|,P2) (1.3-5) 

for every probability distribution p2 over S2. 

Definition In the two-player normal-form game G = {Si,S2;"i.«2K 
the mixed strategies (p\. p\) flrert N«s/» equilibrium if each player's mi ted 
strategy is a best response to the other player's mixed strategy: (1.3.4) and 
ii 1.5) must hold. 

We next apply this definition to Matching Pennies and the Bat-
He of the Sexes, [b do so, we use the graphical representation of 
player «'s best response to player/'s mixed strategy introduced in 
Figure 1.3.3. To complement Figure 1.3.3, we now compute the 
value(s) of </, denoted q*(r), such that (</,l ~ q) is a best response 
for player 2 to (r, 1 -r) by player 1. The results are summarized In 
Figure 1.3.4. [f r • 1/2 then 2'sbest response is Tails, soq*{r) = 0; 
likewise, if r > 1/2 then 2's best response is I [gads, so q*(r) = 1. 
ti / 1/2 then player 2 is indifferent not only between Heads and 
Tails bui also among all the mixed strategies (</, I a), so flf*(l/2) 
is the entire interval [0,1]. 

Alter flipping and rotating Figure 1.3.4, we have Figure 1.3.5. 
Figure 1.3 5 is less convenient than Figure 1.3.4.1s,! representation 
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(Heads) 1 

(Tails) 
1/2 1 r 

(Tails) (Heads) 

Figure 1.3.4. 

(Heads) 1 V 

(Tails) 

(Tails) 
(Heads) 

Figure 1.3.5. 
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(Heads) 1 

(Tails) 

(Tails) 

Figure 1.3.6. 

of player 2's best response to player l 's mixed strategy, but it can 
be combined with Figure 1.3.3 to produce Figure 1.3.6. 

Figure 1.3.6 is analogous to Figure 1.2.1 from the Cournot anal
ysis in Section 1.2.A. Just as the intersection of the best-response 
functions #2(^1) and ^1(^2) gave the Nash equilibrium of the 
Cournot game, the intersection of the best-response correspon
dences r*{q) and q*{r) yields the (mixed-strategy) Nash equilib
rium in Matching Pennies: if player i plays (1/2,1/2) then 
(1/2,1/2) is a best response for player ;', as required for Nash 
equilibrium. 

It is worth emphasizing that such a mixed-strategy Nash equi
librium does not rely on any player flipping coins, rolling dice, 
or otherwise choosing a strategy at random. Rather, we interpret 
player j's mixed strategy as a statement of player i's uncertainty 
about player j's choice of a (pure) strategy. In baseball, for ex
ample, the pitcher might decide whether to throw a fastball or a 
curve based on how well each pitch was thrown during pregame 
practice. If the batter understands how the pitcher will make a 
choice but did not observe the pitcher's practice, then the batter 
may believe that the pitcher is equally likely to throw a fastbaU or a 
curve. We would then represent the batter's belief by the pitcher's 
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mixed strategy (1/2,1/2), when in fact the pitcher chooses a pure 
strategy based on information unavailable to the batter. Stated 
more generally the id< endow player/ with a small amount 
of private information such that, depending on the realization of 
the private information, player /' slightly prefers one of the rele
vant pure strategies. Since player i does not observe j's private 
information, however, i remains uncertain about j's choice, and 
we represent ;'s uncertainty by j's mixed strategy. We provide a 
more formal statement of this interpretation of a mixed strategy 
in Section 3.2.A. 

As a second example of a mixed-strategy Nash equilibrium, 
consider the Battle of the Sexes from Section 1.1.C. Let (q, 1 - q) be 
the mixed strategy in which Pat plays Opera with probability q, 
and let (r, 1 - r) be the mixed strategy in which Chris plays Opera 
with probability r. If Pat plays {q, 1 - q) then Chris's expected 
payoffs are q • 2 + (1 - ,7) • 0 = 2<? from playing Opera and q • 0 + 
(1 -q) • 1 « 1 -q from playing Fight. Thus, if q > 1/3 then Chris's 
best response is Opera (i.e., r = 1), if q < 1/3 then Chris's best 
response is Fight (i.e., r --= 0), and if q = 1/3 then any value of 
r is a best response. Similarly, if Chris plays (r, 1 - r) then Pat's 
expected payoffs are r • 1 + (1 - r ) . 0 = r from playing Opera and 
r-0+ (1 - r ) • 2 = 2(1 -r ) from playing Fight. Thus, if r > 2/3 then 
Pat's best response is Opera (i.e., q = 1), if r < 2/3 then Pat's best 
response is Fight (i.e., q - 0), and if r = 2/3 then any value of q 
is a best response. As shown in Figure 1.3.7, the mixed strategies 
(<M ~q) = (1/3,2/3) for Pat and (r,l - r) = (2/3,1/3) for Chris 
are therefore a Nash equilibrium. 

dike in Figure 1.3.6, where there was only one intersection 
the players' best-response correspondences, there are three in

tersections of r*(q) and q+(r) in Figure 1.3.7: (q = 0,r = 0) and 
), as well as (q = 1/3, r = 2/3). The other two inter

sections represent the pure-strategy Nash equilibria (Fight, Fight) 
and (Opera, Opera) described in Section 1.1 C. 

In any game, a Nash equilibrium (involving pure or mixed 

s) appears as an intersection of the players' best-response 

P v p n ? r ' 6 V e n W h e n t h e r e a r e more than two players, and 

SSLSTiTTor a11 of the p l a y e r s have more than two p u r c 

best rl£L n f ° r t l m a t e l y ' ^ ™ly games in which the players' 
Zns7eZlTeSPmdenCeS h a v e s i m P l e P«pWcal representa-

s are two-player games in which each Player has only two 
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strategies. We turn next to a graphical argument that any such 
game has a Nash equilibrium (possibly involving mixed strate
gies). 

Consider the payoffs for player 1 given in Figure 1.3.8. There 
are two important comparisons: x versus z, and y versus w. Based 
on these comparisons, we can define four main cases: (i) x > z and 
y > w, (ii) x < z and y < w, (iii) x > z and y < w, and (iv) x < z 
and y > w. We first discuss these four main cases, and then turn 
to the remaining cases involving x = z or y = w. 
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Figure 1.3.9. 

case

in case (i) Up strictly dominates Down for player 1, and in 
£ (ii) Down strictly dominates Up. Recall from the previous 

section that a strategy s, is strictly dominated if and only if there 
is no belief that player i could hold (about the strategies the other 
players will choose) such that it would be optimal to play s,. Thus, 
if (q,l - q) is a mixed strategy for player 2, where q is the prob
ability that 2 will play Left, then in case (i) there is no value of 
q such that Down is optimal for player 1, and in case (ii) there is 
no value of q such that Up is optimal. Letting (r, 1 — r) denote 
a mixed strategy for player 1, where r is the probability that 1 
will play Up, we can represent the best-response correspondences 
for cases (i) and (ii) as in Figure 1.3.9. (In these two cases the 
best-response correspondences are in fact best-response functions, 
since there is no value of q such that player 1 has multiple best 
responses.) 

In cases (iii) and (iv), neither Up nor Down is strictly domi
nated. Thus, Up must be optimal for some values of q and Down 

Let q' = (iu - y)/(x - 2 + w - y). Then in 
case (iii) Up is optimal for q > q' and Down for q < q', whereas in 
case (iv) the reverse is true. In both cases, any value of r is optimal 
when q = q'. These best-response correspondences are given in 
Figure 1.3.10. 
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(Down) 
1 

(Left) (Right) 

Case (iii) 

(Up)l 

(Down)* | „, ! ^ 

(Left) (Right) 

Case (iv) 

Figure 1.3.10. 

Since q' = 1 if x = z and q' = 0 if y = w, the best-response 
correspondences for cases involving either x = z or y = w are L-
shaped (i.e., two adjacent sides of the unit square), as would occur 
in Figure 1.3.10 if q' = 0 or 1 in cases (iii) or (iv). 

Adding arbitrary payoffs for player 2 to Figure 1.3.8 and per
forming the analogous computations yields the same four best-
response correspondences, except that the horizontal axis mea
sures r and the vertical q, as in Figure 1.3.4. Flipping and rotating 
these four figures, as was done to produce Figure 1.3.5, yields 
Figures 1.3.11 and 1.3.12. (In the latter figures, r1 is defined anal
ogously to q' in Figure 1.3.10.) 

The crucial point is that given any of the four best-response cor
respondences for player 1, r*(q) from Figures 1.3.9 or 1.3.10, and 
any of the four for player 2, q*{r) from Figures 1.3.11 or 1.3.12, the 
pair of best-response correspondences has at least one intersec
tion, so the game has at least one Nash equilibrium. Checking all 
sixteen possible pairs of best-response correspondences is left as 
an exercise. Instead, we describe the qualitative features that can 
result. There can be: (1) a single pure-strategy Nash equilibrium; 
(2) a single mixed-strategy equilibrium; or (3) two pure-strategy 
equilibria and a single mixed-strategy equilibrium. Recall from 
Figure 1.3.6 that Matching Pennies is an example of case (2), and 
from Figure 1.3.7 that the Battle of the Sexes is an example of 
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(Down) 1 </ 

(Left) (Right) 

Case (0 

(Down) r q 
(Left) (Right) 

Case (it) 

Figure 1.3.11. 

(Up) 1 

(Down) 

q*(r) 

(Left) (Right) 

Case (Hi) 

(Down) 

(Left) (Right) 

Case (iv) 

Figure 1.3.12. 
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/(*) 

x* 1 x 

Figure 1.3.13. 

case (3). The Prisoners' Dilemma is an example of case (1); it re
sults from combining case (i) or (ii) of r*(q) with case (i) or (ii) 
or q*(r).15 

We conclude this section with a discussion of the existence 
of a Nash equilibrium in more general games. If the above ar
guments for two-by-two games are stated mathematically rather 
than graphically, then they can be generalized to apply to w-player 
games with arbitrary finite strategy spaces. 

Theorem (Nash 1950): In the n-player normal-form game G -
{Si,..., S»; u\ , . . . ,«„}, if n is finite and S/ is finite for every i then there 
exists at least one Nash equilibrium, possibly involving mixed strategies. 

The proof of Nash's Theorem involves a fixed-point theorem. 
As a simple example of a fixed-point theorem, suppose f(x) is 
a continuous function with domain [0,1] and range [0,1]. Then 
Brouwer's Fixed-Point Theorem guarantees that there exists at 
least one fixed point — that is, there exists at least one value x* 
in [0,1] such that/(x*) = x*. Figure 1.3.13 provides an example. 

,5The cases involving x = z or y = w do not violate the claim that the pair of 
best-response correspondences has at least one intersection. On the contrary, in 
addition to the qualitative features described in the text, there can now be two 
pure-strategy Nash equilibria without a mixed-strategy Nash equilibrium, and a 
continuum of mixed-strategy Nash equilibria. 
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Applying a fixed-point theorem to prove Nash's Theorem in
volves two steps: (1) showing that any fixed point of a certain 
correspondence is a Nash equilibrium; (2) using an appropriate 
fixed-point theorem to show that this correspondence must have 
a fixed point. The relevant correspondence is the w-player best 
response correspondence. The relevant fixed-point theorem is due 
to Kakutani (1941), who generalized Brouwer's theorem to allow 
for (well-behaved) correspondences as well as functions. 

The H-player best-response correspondence is computed from 
the n individual players' best-response correspondences as fol
lows. Consider an arbitrary combination of mixed strategies 
(pi,..., p„). For each player i, derive i's best response(s) to the 
other players' mixed strategies ip\,..., p,-_i, pj+\ , . . . ,/?„). Then con 
struct the set of all possible combinations of one such best response 
for each player. (Formally, derive each player's best-response 
correspondence and then construct the cross-product of these n 
individual correspondences.) A combination of mixed strategies 
ip*>---ipn) is a fixed point of this correspondence if (p^,...,p*) 
belongs to the set of all possible combinations of the players' best 
responses to (p},...,p*). That is, for each i, p* must be (one of) 
player i's best response(s) to ip\, ..., pj__v p'i+v ..., p*), but this 
is precisely the statement that (p\, ..., p*) is a Nash equilibrium. 
This completes step (1). 

Step (2) involves the fact that each player's best-response cor
respondence is continuous, in an appropriate sense. The role of 
continuity in Brouwer's fixed-point theorem can be seen by mod
ifying fix) in Figure 1.3.13: if f(x) is discontinuous then it need 
not have a fixed point. In Figure 1.3.14, for example, fix) > x for 
all x < x', but f(x') < x' for x > X7.16 

To illustrate the differences between fix) in Figure 1.3.14 and a 
play I'onse correspondence, consider Case (iii) in Fig
ure 1.3.10: at q = q', r*(q') includes zero, one, and the entire 
interval in between. (A bit more formally, r* iq') includes the limit 
• ,i , i-/j as q approaches q' from the left, the limit of r*(q) as q 
appi -in the right, and all the values of r in between 

i two limits.) M fix') in I i 14 behaved analogously to 

' die value oj f| r1] la indi ilid i lr. le The open circle indicates 
ini lude this value, i Ke dotti d Lini is im luded only to indicate 

thai b Iii ate furthei values of /(*')• 
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fix) 

x 

Figure 1.3.14. 

player I's best-response correspondence r*{q'), then f(xJ) would 
include not only the solid circle (as in the figure) but also the 
open circle and the entire interval in between, in which case f(x) 
would have a fixed point at x1. 

Each player's best-response correspondence always behaves 
the way r*(q') does in Figure 1.3.14: it always includes (the appro
priate generalizations of) the limit from the left, the limit from the 
right, and all the values in between. The reason for this is that, 
as shown earlier for the two-player case, if player i has several 
pure strategies that are best responses to the other players' mixed 
strategies, then any mixed strategy px that puts all its probabihty 
on some or all of player i's pure-strategy best responses (and zero 
probabihty on all of player i's other pure strategies) is also a best 
response for player i. Because each player's best-response corre
spondence always behaves in this way, the n-player best-response 
correspondence does too; these properties satisfy the hypotheses 
of Kakutani's Theorem, so the latter correspondence has a fixed 
point. 

Nash's Theorem guarantees that an equilibrium exists in a 
broad class of games, but none of the applications analyzed in 
Section 1.2 are members of this class (because each application 
has infinite strategy spaces). This shows that the hypotheses of 
Nash's Theorem are sufficient but not necessary conditions for an 
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.librium -there are mam that do not satisfy 
the hypothe n but nonetheless have one or mon 
Mash equilibria. 

1.4 Further Reading 

underlying iterated elimination of strictlv 
dominated strategies and Nash equilibrium, and on the inter
pretation oi mi\ed strategies in terms of the players' beliefs, see 

Dn the relation between (Coumot-type 
models where firms choose quantities and (Bertrand-type) mod
els where firms choose prices, see Klreps and Scheinkman (1983), 

.v that in some circumstances the Couxnot outcome occurs 
Bertrand-type model in which firms face capacity constraints 

prior to choosing prices). On arbitra-
see Gibbons B how the arbitrator's preferred 

settlement can depend on the information content of the parties 
both final-otter and conventional arbitration. Finally, on 

the existence of N llibrium.. including pure-strategy equi
libria in game tfitmuous strategy spaces, see Dasgupta and 
Maskin (1986). 

1.5 Problems 

Section 1.1 

1.1. What is a game in normal form? What is a strictly dominated 
strategy in a normal-form game? What is a pure-strategy Nash 
equilibrium in a normal-form gar. 

In the ft » normal-form game, what strategies survive 
iterated elimination of strictly dominated strategies? What are the 

shequilir. 

3.4 

1,3 

1.1 

1.2 

4,? 

2.3 

3,0 
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Flayers 1 and 2 are bargaining over how to split one dollar. 
Both players simultaneously name shares they would like to have, 
>, and 52/ where 0 < si,s2 < 1. If Si + s2 < 1, then the players 
receive the shares they named; if si + s2 > 1, then both players 
receive zero. What are the pure-strategy Nash equilibria of this 
game? 

Section 1.2 

1.4. Suppose there are n firms in the Cournot oligopoly model. 
Let (fi denote the quantity produced by firm i, and let Q = 1/1H h 
qn denote the aggregate quantity on the market Let P denote the 
market-clearing price and assume that inverse demand is given 
by F\Q) = n - Q (assuming Q < a, else P = 0). Assume that the 
total cost of firm 1 from producing quantity (ft is Q{qi) = ajj. That 
is, there are no fixed costs and the marginal cost is constant at c, 
where we assume c < a. Following Cournot, suppose that the 
firms choose their quantities simultaneously. What is the Nash 
equilibrium? W7hat happens as n approaches infinity? 

13. Consider the following two finite versions of the Cournot 
duopoly model. First, suppose each firm must choose either half 
the monopoly quantity, qm/2 = (a - c)/4, or the Cournot equilib
rium quantity. qc = (fl - c)/3. No other quantities are feasible. 

\ that this two-action game is equivalent to the Prisoners' 
Dilemma: each firm has a strictly dominated strategy, and both 
are worse off in equilibrium than they would be if they cooper
ated. Second, suppose each firm can choose either qm/2, or qc, 
or a third quantity, i)'. Find a value for cf such that the game is 
equivalent to the Cournot model in Section 1.2.A, in the sense that 
Ojei <lc) is a unique Nash equilibrium and both firms are worse off 
in equilibrium than thev could be if they cooperated, but neither 
firm has a strictly dominated strategy. 

1.6. Consider the Cournot duopoly model where inverse demand 
is P(Q) = a - Q but firms have asymmetric marginal costs 
tor firm 1 and c2 for firm 2. What is the Nash equilibrium if 
0 < c. < a 2 for each firm? What if c\ < Q < * but 2. 

In Section 1J2.B, we analyzed the Bertrand duopoly model 
with differentiated products. The case of homogeneous products 
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yields a stark conclusion. Suppose that the quantity that con 
sumers demand from firm lis a- p, when p, < pj, 0 when ps > v 

and (a - p,)/2 when pt = pj. Suppose also that there are no fixed' 
costs and that marginal costs are constant at c, where c < a. Show 
that if the firms choose prices simultaneously, then the unique 
Nash equilibrium is that both firms charge the price c. 

1.8. Consider a population of voters uniformly distributed alone 
the ideological spectrum from left (x = 0) to right (x ~ 1). Each of 
the candidates for a single office simultaneously chooses a cam
paign platform (i.e., a point on the line between x = 0 and x — l). 
The voters observe the candidates' choices, and then each voter 
votes for the candidate whose platform is closest to the voter's 
position on the spectrum. If there are two candidates and thev 
choose platforms .ti = .3 and xj = .6, for example, then all 
voters to the left of x — .45 vote for candidate 1, all those to 
the right vote for candidate 2, and candidate 2 wins the elec
tion with 55 percent of the vote. Suppose that the candidates 
care only about being elected—they do not really care about their 
platforms at all! If there are two candidates, what is the pure-
strategy Nash equiUbrium? If there are three candidates, exhibit 
a pure-strategy Nash equiUbrium. (Assume that any candidates 
who choose the same platform equally split the votes cast for that 
platform, and that ties among the leading vote-getters are resolved 
by coin flips.) See Hotelling (1929) for an early model along these 
lines. 

Section 1.3 

1.9. What is a mixed strategy in a nonnal-form game? What is a 
mixed-strategy Nash equilibrium in a normal-form game? 

1.10. Show that there are no mixed-strategy Nash equilibria in 
the three normal-form games analyzed in Section 1.1—the Prison
ers' Dilemma, Figure 1.1.1, and Figure 1.1.4. 

1.11. Solve for the mixed-strategy Nash equilibria in the game m 
Problem 1.2. 
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1 12. Find the mixed-strategy Nash equilibrium of the following 
r,r»rmal-form game. normal-form game. 

T 

B 

R 

2,1 

1,2 

0,2 

3,0 

1.13. Each of two firms has one job opening. Suppose that (for 
reasons not discussed here but relating to the value of filling each 
opening) the firms offer different wages: firm i offers the wage w„ 
where (l/2)w\ <wi< 2w\. Imagine that there are two workers, 
each of whom can apply to only one firm. The workers simulta
neously decide whether to apply to firm 1 or to firm 2. If only one 
worker applies to a given firm, that worker gets the job; if both 
workers apply to one firm, the firm hires one worker at random 
and the other worker is unemployed (which has a payoff of zero). 
Solve for the Nash equilibria of the workers' normal-form game. 
(For more on the wages the firms will choose, see Montgomery 
[1991].) 

Worker 2 

Apply to Apply to 

Firm 1 Firm 2 

Worker 1 
Apply to Firm 1 

Apply to Firm 2 

Jwi.Jwi 

102, WX 

Wl,W2 

\w2, \wz 

1.14. Show that Proposition B in Appendix 1.1 .C holds for mixed-
as well as pure-strategy Nash equilibria: the strategies played with 
positive probability in a mixed-strategy Nash equilibrium survive 
the process of iterated elimination of strictly dominated strategies. 
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Chapter 2 

Dynamic Games of 
Complete Information 

In this chapter we introduce dynamic games. We again restrict at
tention to games with complete information (i.e., games in which 
the players' payoff functions are common knowledge); see Chap
ter 3 for the introduction to games of incomplete information. In 
Section 2.1 we analyze dynamic games that have not only com
plete but also perfect information, by which we mean that at each 
move in the game the player with the move knows the full history 
of the play of the game thus far. In Sections 2.2 through 2.4 we 

ider games of complete but imperfect information: at some 
move the player with the move does not know the history of the 
game. 

The central issue in all dynamic games is credibility. As an 
example of a noncredible threat, consider the following two-move 
game. First, player 1 chooses between giving player 2 $1,000 and 
giving player 2 nothing. Second, player 2 observes player l's 
move and then chooses whether or not to explode a grenade that 
will kill both players. Suppose player 2 threatens to explode the 
grenade unless player 1 pays the SI,000. If player 1 believes the 

at/ then player l's best response is to pay the $1,000. But 
player 1 should not believe the threat, because it is noncredible: 
« player 2 were given the opportunity to carry out the threat, 

55 
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player 2 would choose not to carry it out. Thus, player 1 should 
pay player 2 nothing.1 

In Section 2.1 we analyze the following class of dynamic games 
of complete and perfect information: first player 1 moves, then 
player 2 observes player 1's move, then player 2 moves and the 
game ends. The grenade game belongs to this class, as do Stack-
elberg's (1934) model of duopoly and Leontief's (1946) model of 
wage and employment determination in a unionized firm. We 
define the backwards-itidnction outcome of such games and briefly 
discuss its relation to Nash equilibrium (deferring the main discus
sion of this relation until Section 2.4). We solve for this outcome 
in the Stackelberg and Leontief models. We also derive the analo
gous outcome in Rubinstein's (1982) bargaining model, although 
this game has a potentially infinite sequence of moves and so does 
not belong to the above class of games. 

In Section 2.2 we enrich the class of games analyzed .. the 
previous section: first players 1 and 2 move simultaneously, then 
players 3 and 4 observe the moves chosen by 1 and 2, then play 
ers 3 and 4 move simultaneously and the game ends. As will be 
explained in Section 2.4, the simultaneity of moves here means that 
these games have imperfect information. We define the subgame-
perfect outcome of such games, which is the natural extension of 
backwards induction to these games. We solve for this outcome 
in Diamond and Dybvig's (1983) model of bank runs, in a model 
of tariffs and imperfect international competition, and in Lazcar 
and Rosen's (1981) model of tournaments. 

In Section 2.3 we study repeated games, in which a fixed group 
of players plays a given game repeatedly, with the outcomes of all 
previous plays observed before the next play begins. The theme 
of the analysis is that (credible) threats and promises about future 
behavior can influence current behavior. We define subgame-perfect 
Nash equilibrium for repeated games and relate it to the backwards-
induction and subgame-perfect outcomes defined in Sections 2.1 
and 2.2. We state and prove the Folk Theorem for infinitely re-

1 Player 1 might wonder whether an opponent who threatens to explode •1 

grenade is crazy. We model such doubts as incomplete information—player 
unsure about player 2's payoff function. See Chapter 3. 
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peated games, and we analyze Friedman's (1971) model of col
lusion between Cournot duopolists, Shapiro and Stiglitz's (1984) 
model of efficiency wages, and Barro and Gordon's (1983) model 
of monetary policy. 

In Section 2.4 we introduce the tools necessary to analyze a 
general dynamic game of complete information, whether with per
fect or imperfect information. We define the extensive-form repre
sentation of a game and relate it to the normal-form representation 
introduced in Chapter 1. We also define subgame-perfect Nash 
equilibrium for general games. The main point (of both this sec
tion and the chapter as a whole) is that a dynamic game of com
plete information may have many Nash equilibria, but some of 
these may involve noncredible threats or promises. The subgame-
perfect Nash equilibria are those that pass a credibility test. 

2.1 Dynamic Games of Complete and Perfect 
Information 

2.1.A Theory: Backwards Induction 

The grenade game is a member of the following class of simple 
games of complete and perfect information: 

1. Player 1 chooses an action a\ from the feasible set A\, 

2. Player 2 observes ai and then chooses an action ai from the 
feasible set A2. 

3. Payoffs are u\{a\^a-i) and 1*2(01, ̂ 2)-

Many economic problems fit this description.2 Two examples 

2Player 2's feasible set of actions, A2l could be allowed to depend on player l's 
action, a,. Such dependence could be denoted by A2{ai) or could be incorporated 
into player 2's payoff function, by setting H2(QI,O2) = -co for values of a2 that 
are not feasible for a given «i. Some moves by player I could even end the game, 
without player 2 getting a move; for such values of aXl the set of feasible actions 
^2(«i) contains only one element, so player 2 has no choice to make. 
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(discussed later in detail) are Stackelberg's model of duopoly and 
Leontief's model of wages and employment in a unionized firm. 
Other eo lie modeled by allowing for a longer 
sequence of actions, either by adding more players or by allowing 
players to move mor. race. (Rubinstein's bargaining game, 
discussed in Section 2.1.D, is an example of the latter.) The key 
features of a dynamic gan mplete and perfect information 
are that (i) the moves occur in sequence, (ii) all previous moves 
are observed before the next move is chosen, and (iii) the play
ers' payoffs from each feasible combination of moves are common 
knowledge. 

We solve a game from this class by backwards induction, ,is 
follows. When player 2 gets the move at the second stage of the 
game, he or she will face the following problem, given the action 
a\ previously chosen by player 1: 

max U2(fli,fl2)-
arfzA-i 

Assume that for each a\ in A), player 2's optimization problem has 
a unique solution, denoted by Rj{a\). This is player 2's reaction 
(or best response) to player l 's action. Since player 1 can solve 2's 
problem as well as 2 can, player 1 should anticipate player 2's 
reaction to each action a\ that 1 might take, so l 's problem at the 
first stage amounts to 

m a x u]{al,R2(a])). 
a\€A\ 

Assume that this optimization problem for player 1 also has a 
unique solution, denoted by a\. We will call (a},#2(<*?)) the back
wards-induction outcome of this game. The backwards-induction 
outcome does not involve noncredible threats: player 1 anticipates 
that player 2 will respond optimally to any action a\ that 1 might 
choose, by playing #2(01); player 1 gives no credence to threats 
by player 2 to respond in ways that will not be in 2's self-interest 
when the second stage arrives. 

Recall that in Chapter 1 we used the normal-form represen
tation to study static games of complete information, and we fo
cused on the notion of Nash equilibrium as a solution concept 
for such games. In this section's discussion of dynamic games, 
however, we have made no mention of either the normal-form 
representation or Nasi; equilibrium. Instead, we have given » 
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verbal description of a game in (l)-(3), and we have defined the 
backwards-induction outcome as the solution to that game. In 
Section 2.4.A we will see that the verbal description in (l)-(3) 
is the extensive-form representation of the game. We will relate 
the extensive- and normal-form representations, but we will find 
that for dynamic games the extensive-form representation is of
ten more convenient. In Section 2.4.B we will define subgame-
perfect Nash equilibrium: a Nash equilibrium is subgame-perfect 
if it does not involve a noncredible threat, in a sense to be made 
precise. We will find that there may be multiple Nash equilib
ria in a game from the class defined by (l)-(3), but that the only 
subgame-perfect Nash equilibrium is the equilibrium associated 
with the backwards-induction outcome. This is an example of 
the observation in Section l.l.C that some games have multiple 
Nash equilibria but have one equilibrium that stands out as the 
compelling solution to the game. 

We conclude this section by exploring the rationality assump
tions inherent in backwards-induction arguments. Consider the 
following three-move game, in which player 1 moves twice: 

1. Player 1 chooses L or R, where L ends the game with payoffs 
of 2 to player 1 and 0 to player 2. 

2. Player 2 observes l 's choice. If 1 chose R then 2 chooses 
V or R', where V ends the game with payoffs of 1 to both 
players. 

3. Player 1 observes 2's choice (and recalls his or her own choice 
in the first stage). If the earlier choices were R and R' then 1 
chooses L" or R", both of which end the game, I" with pay
offs of 3 to player 1 and 0 to player 2 and R" with analogous 
payoffs of 0 and 2. 

All these words can be translated into the following succinct game 
tree. (This is the extensive-form representation of the game, to be 
defined more generally in Section 2.4.) The top payoff in the pair 
of payoffs at the end of each branch of the game tree is player l's, 
the bottom player 2's. 
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3 0 
0 2 

To compute the backwards-induction outcome of this game, 
we begin at the third stage (i.e., player l 's second move). Here 
player 1 faces a choice between a payoff of 3 from L" and a payoff 
of 0 from R", so I" is optimal. Thus, at the second stage, player 2 
anticipates that if the game reaches the third stage then 1 will play 
I", which would yield a payoff of 0 for player 2. The second-stage 
choice for player 2 therefore is between a payoff of 1 from V and 
a payoff of 0 from R', so V is optimal. Thus, at the first stage, 
player 1 anticipates that if the game reaches the second stage then 
2 will play U, which would yield a payoff of 1 for player 1. The 
first-stage choice for player 1 therefore is between a payoff of 2 
from L and a payoff of 1 from R, so L is optimal. 

This argument establishes that the backwards-induction out
come of this game is for player 1 to choose L in the first stage, 
thereby ending the game. Even though backwards induction pre
dicts that the game will end in the first stage, an important part 
of the argument concerns what would happen if the game did 
not end in the first stage. In the second stage, for example, when 
player 2 anticipates that if the game reaches the third stage then 1 
will play /.", 2 is assuming that 1 is rational. This assumption may 
seem inconsistent with the fact that 2 gets to move in the second 
stage only if 1 deviates from the backwards-induction outcome of 
the game. That is, it may seem that if 1 plays R in the first stage 
then 2 ca iume in the second stage that 1 is rational, but 
this is not the ca ['lays R in the first stage then it cannot 
be common knowledge that both players are rational, but there 
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remain reasons for 1 to have chosen R that do not contradict 2's 
assumption that 1 is rational.3 One possibility is that it is common 
knowledge that player 1 is rational but not that player 2 is ratio
nal: if 1 thinks that 2 might not be rational, then 1 might choose 
R in the first stage, hoping that 2 will play R' in the second stage, 
thereby giving 1 the chance to play L" in the third stage. Another 
possibility is that it is common knowledge that player 2 is rational 
but not that player 1 is rational: if 1 is rational but thinks that 2 
thinks that 1 might not be rational, then 1 might choose R in the 
first stage, hoping that 2 will think that 1 is not rational and so play 
R' in the hope that 1 will play R" in the third stage. Backwards 
induction assumes that l ' s choice of JR could be explained along 
these lines. For some games, however, it may be more reasonable 
to assume that 1 played R because 1 is indeed irrational. In such 
games, backwards induction loses much of its appeal as a predic
tion of play, just as Nash equilibrium does in games where game 
theory does not provide a unique solution and no convention will 
develop. 

2.1.B Stackelberg Model of Duopoly 

Stackelberg (1934) proposed a dynamic model of duopoly in which 
a dominant (or leader) firm moves first and a subordinate (or 
follower) firm moves second. At some points in the history of 
the U.S. automobile industry, for example, General Motors has 
seemed to play such a leadership role. (It is straightforward to 
extend what follows to allow for more than one following firm, 
such as Ford, Chrysler, and so on.) Following Stackelberg, we will 
develop the model under the assumption that the firms choose 
quantities, as in the Cournot model (where the firms' choices are 
simultaneous, rather than sequential as here). We leave it as an 
exercise to develop the analogous sequential-move model in which 
firms choose prices, as they do (simultaneously) in the Bertrand 
model. 

The timing of the game is as follows: (1) firm 1 chooses a 
quantity c\\ > 0; (2) firm 2 observes c\\ and then chooses a quantity 

Recall from the discussion of iterated elimination of strictly dominated strate-
in Section 1.LB) that it is common knowledge that the players are rational 

if all the players are rational, and all the players know that all the players are 
rational, and all the players know that all the players know that all the players 
are rational, and so on, ad infinitum. 
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(\2 > 0; (3) the payoff to firm i is given by the profit function 

where P{Q) = a - Q is the market-clearing price when the aggre
gate quantity on the market is Q = (]\ + <72, and c is the constant 
marginal cost of production (fixed costs being zero). 

To solve for the backwards-induction outcome of this game, we 
first compute firm 2's reaction to an arbitrary quantity by firm 1. 
R2(<7i) solves 

max TT2(<7I,<72) = max q2[a -q\~qi~-c], 
q3>0 «72>0 

which yields 

provided cj\ < a - c. The same equation for #2(^1) appeared 
in our analysis of the simultaneous-move Cournot game in Sec
tion 1.2.A. The difference is that here Ri(q\) is truly firm 2's reac
tion to firm l's observed quantity, whereas in the Cournot analysis 
Riitfi) is firm 2's best response to a hypothesized quantity to be 
simultaneously chosen by firm 1. 

Since firm 1 can solve firm 2's problem as well as firm 2 can 
solve it, firm 1 should anticipate that the quantity choice cf\ will 
be met with the reaction ^2(^1)- Thus, firm l 's problem in the first 
stage of the game amounts to 

max irj(<ji,R2toi)) = m a * <?i[fl ~ <h - -R2O7O - c] 

a - ql - c 
= m ax qi 3- , 

<?i>o 2 

— - ana K ^ ^ — 

which yields 

as the backwards-induction outcome of the StacKeioerg ctuopoiy 
game.4 

4Just as "Cournot equilibrium" and "Bertrand equilibrium" typically re
fer to the Nash equilibria of the Cournot and Bertrand games, references to 
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Recall from Chapter 1 that in the Nash equilibrium of the 
Cournot game each firm produces («-c)/3. Thus, aggregate quan
tity in the backwards-induction outcome of the Stackelberg game, 
3(A - c)/4, is greater than aggregate quantity in the Nash equilib
rium of the Cournot game, 2(« - c ) / 3 , so the market-clearing price 
is lower in the Stackelberg game. In the Stackelberg game, how
ever, firm 1 could have chosen its Cournot quantity, (a - c)/3, in 
which case firm 2 would have responded with its Cournot quan
tity. Thus, in the Stackelberg game, firm 1 could have achieved its 
Cournot profit level but chose to do otherwise, so firm l's profit in 
the Stackelberg game must exceed its profit in the Cournot game. 
But the market-clearing price is lower in the Stackelberg game, so 
aggregate profits are lower, so the fact that firm 1 is better off im
plies that firm 2 is worse off in the Stackelberg than in the Cournot 
game. 

The observation that firm 2 does worse in the Stackelberg than 
in the Cournot game illustrates an important difference between 
single- and multi-person decision problems. In single-person deci
sion theory, having more information can never make the decision 
maker worse off. In game theory, however, having more informa
tion (or, more precisely, having it known to the other players that 
one has more information) can make a player worse off. 

In the Stackelberg game, the information in question is firm l's 
quantity: firm 2 knows q\, and (as importantly) firm 1 knows that 
firm 2 knows q\. To see the effect this information has, consider 
the modified sequential-move game in which firm 1 chooses q\, 
after which firm 2 chooses q2 out does so without observing q\. If 
firm 2 believes that firm 1 has chosen its Stackelberg quantity q\ = 
(a-c)/2, then firm 2's best response is again R2O7?) = ( f l _ c)/4- B u t 

if firm 1 anticipates that firm 2 will hold this belief and so choose 
this quantity, then firm 1 prefers to choose its best response to 
(a - c)/4—namely, 3(a - c)/8—rather than its Stackelberg quantity 
(a-c)/2. Thus, firm 2 should not believe that firm 1 has chosen its 
Stackelberg quantity. Rather, the unique Nash equilibrium of this 

"Stackelberg equilibrium" often mean that the game is sequential- rather than 
simultaneous-move. As noted in the previous section, however, sequential-move 
games sometimes have multiple Nash equilibria, only one of which is associated 
with the backwards-induction outcome of the game. Thus, "Stackelberg equilib
rium" can refer both to the sequential-move nature of the game and to the use 
of a stronger solution concept than simply Nash equilibrium. 
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modified sequential-move game is for both firms to choose the 
quantity (a -c)/3—precisely the Nash equilibrium of the Cournot 
game, where the firms move simultaneously.5 Thus, having firm 1 
know that firm 2 knows c\\ hurts firm 2. 

2.1.C Wages and Employment in a Unionized Firm 

In Leontief's (1946) model of the relationship between a firm and a 
monopoly union (i.e., a union that is the monopoly seller of labor 
to the firm), the union has exclusive control over wages, but the 
firm has exclusive control over employment. (Similar qualitative 
conclusions emerge in a more realistic model in which the firm 
and the union bargain over wages but the firm retains exclusive 
control over employment.) The union's utility function is U(w. I.), 
where w is the wage the union demands from the firm and L is 
employment. Assume that U(w, L) increases in both w and L. The 
firm's profit function is 7r(w, I) = R(L) - wL, where R(L) is the 
revenue the firm can earn if it employs L workers (and makes the 
associated production and product-market decisions optimally) 
Assume that R(L) is increasing and concave. 

Suppose the timing of the game is: (1) the union makes a wage 
demand, w; (2) the firm observes (and accepts) w and then chooses 
employment, L; (3) payoffs are U(w,L) and TT(W,L). We can say 
a great deal about the backwards-induction outcome of this game 
even though we have not assumed specific functional forms for 
U(w,L) and R(L) and so are not able to solve for this outcome 
explicitly. 

First, we can characterize the firm's best response in stage (2), 
V(w), to an arbitrary wage demand by the union in stage (1), w. 
Given w, the firm chooses L'(w) to solve 

max it(w,L) = max R(L) - ivL, 
L>0 L>0 

the first-order condition for which is 

R'(L) -w = 0. 

'This is an example of a claim we made in Section 1.1.A: in a normal-form 
game the players choose their strategies simultaneously, but this does not imply 
that the parties necessarily act simultaneously; it suffices that each choose his or 
her action without knowledge of the others' choices. For further discussion of 
this point, see Section 2.4.A. 
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Figure 2.1.1. 

To guarantee that the first-order condition R'(L) - w = 0 has a 
solution, assume that R'{0) = oo and that R'(oo) = 0, as suggested 
in Figure 2.1.1. 

Figure 2.1.2 plots L*(w) as a function of w (but uses axes that 
ease comparison with later figures) and illustrates that L*{w) cuts 
each of the firm's isoprofit curves at its maximum.6 Holding L 
fixed, the firm does better when w is lower, so lower isoprofit 
curves represent higher profit levels. Figure 2.1.3 depicts the 
union's indifference curves. Holding L fixed, the union does better 
when w is higher, so higher indifference curves represent higher 
utility levels for the union. 

We turn next to the union's problem at stage (1). Since the 
union can solve the firm's second-stage problem as well as the firm 
can solve it, the union should anticipate that the firm's reaction 
to the wage demand w will be to choose the employment level 

T h e latter property is merely a restatement of the fact that L'(w) maximizes 
-(L, w) given w. If the union demands w', for example, then the firm's choice of 
L amounts to the choice of a point on the horizontal line w = vf. The highest 
feasible profit level is attained by choosing I such that the isoprofit curve through 
(L,w') is tangent to the constraint w = w'. 
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IV L*(w) 

firm's isoprofit curves 

Figure 2.1.2. 

W 

union's indifference curves 

Figure 2.1.3. 

u s ' t h e union's problem at the first stage amounts to 

max U(w,L*(w)). 

S °f t h e ^difference curves plotted in Figure 2.1-3, the 
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union's indifference 

w 

w* 

\ 

L* 

curve 

(w*) 

\ x L 

L 

(to) 

Figure 2.1.4. 

union would like to choose the wage demand w that yields the 
outcome (w,L*(w)) that is on the highest possible indifference 
curve. The solution to the union's problem is w*, the wage de
mand such that the union's indifference curve through the point 
(w*,L*(w*)) is tangent to L*(u>) at that point; see Figure 2.1.4. 
Thus, {w*,L*(w*)) is the backwards-induction outcome of this 
wage-and-employment game. 

It is straightforward to see that (w*,L*(w*)) is inefficient: both 
the union's utility and the firm's profit would be increased if w 
and L were in the shaded region in Figure 2.1.5. This inefficiency 
makes it puzzling that in practice firms seem to retain exclusive 
control over employment. (Allowing the firm and the union to 
bargain over the wage but leaving the firm with exclusive con
trol over employment yields a similar inefficiency.) Espinosa and 
Rhee (1989) propose one answer to this puzzle, based on the fact 
that the union and the firm negotiate repeatedly over time (of
ten every three years, in the United States). There may exist an 
equilibrium of such a repeated game in which the union's choice 
of w and the firm's choice of L lie in the shaded region of Fig
ure 2.1.5, even though such values of w and L cannot arise as the 
backwards-induction outcome of a single negotiation. See Sec
tion 2.3 on repeated games and Problem 2.16 on the Espinosa-Rhee 
model. 
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firm's isoprofit 
curve 

\L*(w) 

L*(w*) L 

Figure 2.1.5. 

2.1.D Sequential Bargaining 

We begin with a three-period bargaining model from the class 
ed in Section 2.1.A. We then discuss Rubinstein's 

I) model, in which the number of periods is (potentially) infi-
ln both models, settlement occurs immediately—protracted 

negotiations (such as strikes) do not occur. In Sobel and Taka-
1983) model of sequential bargaining under asymmetric 

in contrast, strikes occur with positive probability in 
unique (perfect Bayesian) equilibrium; see Section 4.3.B. 

I and 2 are bargaining over one dollar. They alternate 
in m i |'layer 1 makes a proposal that player 2 
can accepl <» reject; if 2 rejects then 2 makes a proposal that 1 
can ai cepl or reject; and so on. Once an offer has been rejected, it 

es to be binding and is irrelevant to the subsequent play of the 
lakes one period, and the players are impatient: 

they received in later periods by the factor 6 per 
perio l.7 

M" ' ta the time value oney, A dollar received at 
"" •'" ;l can be pul in the ban! to earn interest, say at rate/ 

, e r iod ' '""' '" '•V|H lir worth i l i dollars at the beginning of the next period. 
1 latently, a dollai to b( \\ the beginning ol the next period is worth 

J ' " '' "' '' •'""•" n« 1/(1 r) [Tien a payoff 7T to be received 
'" "" i payoff 7T to be received two period-

W 
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A more detailed description of the timing of the three-period 
bargaining game is as follows. 

(la) At the beginning of the first period, player 1 proposes to take 
a share Si of the dollar, leaving 1 - si for player 2. 

(lb) Player 2 either accepts the offer (in which case the game 
ends and the payoffs si to player 1 and 1 - s\ to player 2 
are immediately received) or rejects the offer (in which case 
play continues to the second period). 

(2a) At the beginning of the second period, player 2 proposes 
that player 1 take a share s2 of the dollar, leaving 1 - s2 for 
player 2. (Note the convention that s( always goes to player 
1, regardless of who made the offer.) 

(2b) Player 1 either accepts the offer (in which case the game 
ends and the payoffs s2 to player 1 and 1 - s2 to player 2 
are immediately received) or rejects the offer (in which case 
play continues to the third period). 

(3) At the beginning of the third period, player 1 receives a share 
s of the dollar, leaving 1 - s for player 2, where 0 < s < 1. 

In this three-period model, the third-period settlement (s, 1 - s) is 
given exogenously. In the infinite-horizon model we later consider, 
the payoff s in the third period will represent player l's payoff in 
the game that remains if the third period is reached (i.e., if the 
first two offers are rejected). 

To solve for the backwards-induction outcome of this three-
period game, we first compute player 2's optimal offer if the sec
ond period is reached. Player 1 can receive s in the third period by 
rejecting player 2's offer of s2 this period, but the value this period 
of receiving s next period is only 6s. Thus, player 1 will accept s2 

if and only if s2 > 6s. (We assume that each player will accept an 
i if indifferent between accepting and rejecting.) Player 2's 

second-period decision problem therefore amounts to choosing 

from now is worth only 62n now, and so on. The value today of a future payoff 
i called the present value of that payoff. 
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between receiving 1 -6s this period (by offering s2 = 6s to player 1) 
and receiving 1 - s next period (by offering player 1 any s2 < 6s). 
The discounted value of the latter option is 6(1 - s), which is less 
than the 1 - 6s available from the former option, so player 2's 
optimal second-period offer is s2 = 6s. Thus, if play reaches the 
second period, player 2 will offer s2 and player 1 will accept. 

Since player 1 can solve player 2's second-period problem as 
well as player 2 can, player 1 knows that player 2 can receive 
1 - Sj in the second period by rejecting player l ' s offer of si this 
period, but the value this period of receiving 1 - s2 next period 
is only 6(1 - s'2). Thus, player 2 will accept 1 - s\ if and only 
if 1 -Si > 6(1 - sj), or S] < 1 - 6(1 - s£). Player l ' s first-period 
decision problem therefore amounts to choosing between receiving 
1 — <5(1 — Sj) this period (by offering 1 - s \ = 6(1 - s|) to player 2) 
and receiving s'2 next period (by offering any 1 - Si < <5(1 - s£) to 
player 2). The discounted value of the latter option is 6s2 — d2s, 
which is less than the 1 - 6(1 - sj) = 1 - 6(1 - 6s) available from 
the former option, so player l's optimal first-period offer is s\ -
1 - 6(1 - s|) = 1 - 6(1 - 6s). Thus, in the backwards-induction 
outcome of this three-period game, player 1 offers the settlement 

] -SJ) to player 2, who accepts. 
Now consider the infinite-horizon case. The timing is as de

scribed previously, except that the exogenous settlement in step (3) 
is replaced by an infinite sequence of steps (3a), (3b), (4a), (4b), and 
so on. Player 1 makes the offer in odd-numbered periods, player 2 
in even-numbered; bargaining continues until one player accepts 
an offer. We would like to solve for the backwards-induction out
come of the infinite-horizon game by working backwards, as in 
all the applications analyzed so far. Because the game could go 
on infinitely, however, there is no last move at which to begin 
such an analysis. Fortunately, the following insight (first applied 
by Shaked and Sutton 1984) allows us to truncate the infinite-
horizon game and apply the logic from the finite-horizon case: 
the game beginning in the third period (should it be reached) is 
identical to the game as a whole (beginning in the first period)—in 
both cases, player 1 makes the first offer, the players alternate in 
making subsequent offers, and the bargaining continues until one 
player accepts an offer. 

Since we have not formally defined a backwards-induction out
come for this infinite-horizon bargaining game, our arguments 
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will be informal (but can be made formal). Suppose that there 
is a backwards-induction outcome of the game as a whole in 
which players 1 and 2 receive the payoffs s and 1 - s, respec
tively. We can use these payoffs in the game beginning in the 
third period, should it be reached, and then work backwards to 
the first period (as in the three-period model) to compute a new 
backwards-induction outcome for the game as a whole. In this 
new backwards-induction outcome, player 1 will offer the settle
ment (f(s),l - f(s)) in the first period and player 2 will accept, 
where f(s) = 1 - 6(1 - 6s) is the share taken by player 1 in the 
first period of the three-period model above when the settlement 
(s, 1 - s) is exogenously imposed in the third period. 

Let SH be the highest payoff player 1 can achieve in any back
wards-induction outcome of the game as a whole. Imagine using 
SH as the third-period payoff to player 1, as previously described: 
this will produce a new backwards-induction outcome in which 
player l 's first-period payoff is f(sH). Since f(s) = 1 - 6 + 62s 
is increasing in s, f(sn) is the highest possible first-period payoff 
because SH is the highest possible third-period payoff. But sH is 
also the highest possible first-period payoff, SO/(SH) = SH- Parallel 
arguments show that f(sL) = sL, where sL is the lowest payoff 
player 1 can achieve in any backwards-induction outcome of the 
game as a whole. The only value of s that satisfies f(s) = s is 
1/(1+6), which we will denote by s*. Thus, SH = si = s*, so there 
's a unique backwards-induction outcome in the game as a whole: 
m the first period, player 1 offers the settlement (s* = 1/(1 4- 6), 

- s* = 6/(1 + 6)) to player 2, who accepts. 

Two-Stage Games of Complete but Imperfect 
Information 

2.2.A Theory: Subgame Perfection 

t i o n " ^ e n r i c n t n e c ^ a s s °* games analyzed in the previous sec-
W e ' I l n dy n a r nic games of complete and perfect information, 
w i t ^ 0 I ? t l n u e t o assume that play proceeds in a sequence of stages, 
staee h G . m o v e s m all previous stages observed before the next 

^ g m s . Unlike in the games analyzed in the previous section, 
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be simultaneous moves within 
led in 5 : ! 4, this simultaneity 

- rages means that the analyzed in this sec-
- these games share 

important features with the perfect-information games considered 
in the p 

tne, which we (unin-
spire mplete but imperfect infor-
man 

simultaneously choose actions a\ and a2 from 
respectively. 

.-serve the outcome of the first stage, {ai.a2) 
and then simultaneo oose actions IJ:. and a4 from fea-

_, respectively. 

1. 2. 3. 4. 

Many economic problems fit this description.^ Tlu-ee examples 
(later discussed in detail) are bank runs, tariffs and imperfect inter
national competition, and tournaments (e.g., competition among 
several vice presidents in a firm to be the next president). Other 

m be modeled by allowing for a longer se-
ces, either by adding players or by allowing players 

to move in more than one stage. There could also be fewer play-
n some applications, players 3 and 4 are players 1 and 2; in 

others, either I or player 4 is missing. 
game from this class by using an approach in the 

spirit of back iuction, but this time the first step in work
ing backwards from the end of the game involves solving a real 
game (the simultaneous-move game between players 3 and 4 in 

given the outcome from stage one) rather than solving 
a single-person optimization problem as in the previous section 
To keep things simple, in this section we will assume that for each 

We outcome of the first-stage game, (a-[.a2), the second-stage 
game that remains between players 3 and 4 has a unique Nash 
equilibrium, denoted ; In Section 2.3.A (on 

in the previous section, the feasible action sets of players 3 and 4 in the 
secor. be allowed to depend on the outcome of the first 

). In particular, there may be values of (01,02) that end the game. 
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repeated games) we consider the implications of relaxing this as
sumption. 

If players 1 and 2 anticipate that the second-stage behavior of 
and 4 will be given by (1?: (a-[. 02), a\ (a\. 02)), then the first-

interaction between players 1 and 2 amounts to the following 
simultaneous-move game: 

1. Players 1 and 2 simultaneously choose actions a\ and a2 from 
isible sets A\ and A2, respectively. 

• tfs are ui(a-[.ii^.a:\al.j1 ..K .; . . ; : 1 fori = 1,1 

Suppose {ti\.a}.) is the unique Nash equilibrium of this simultan
eous-move game. We will call ( ^ . a ^ ^ U ^ : ) . ^ ' ^ . ^ ) &e 

me-perfect outcome of this two-stage game. This outcome is 
the natural analog of the backwards-induction outcome in games 
of complete and perfect information, and the analogy applies to 
both the attractive and the unattractive features of the latter. Plav-

and 2 should not believe a threat by players 3 and 4 that the 
latter will respond with actions that are not a Nash equilibrium 
in the remaining second-stage game, because when play actually 
reaches the second stage at least one of players 3 and 4 will not 
want to carry7 out such a threat (exactly because it is not a Nash 
equilibrium of the game that remains at that stage). On the other 
hand, suppose that player 1 is also player 3, and that player 1 does 
not play a\ in the first stage: player 4 may then want to reconsider 
the assumption that player 3 (i.e., player 1) will play 03(01,02) hi 
the second stage. 

2.2.B B a n k R u n s 

investors have each deposited D with a bank. The bank has 
invested these deposits in a long-term project. If the bank is forced 
to liquidate its investment before the project matures, a total of 2r 
can be recovered, where D > r > D/2. If the bank allows the 
investment to reach maturity, however, the project will pay out a 
total of 1R, where R> D. 

There are two dates at which the investors can make with-
als from the bank: date 1 is before the bank's investment 

matures; date 2 is after. For simplicity, assume that there is no 
discounting. If both investors make withdrawals at date 1 then 
each receives r and the game ends. If only one investor makes 
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a withdrawal at date 1 then that investor receives D, the other 
recei D, and the game ends. Finally, if neither investor 
makes a withdrawal at date 1 then the project matures and the 
investors make withdrawal decisions at date 2. If both investors 
make withdrawals at date 2 then each receives R and the game 
ends. If only one investor makes a withdrawal at date 2 then that 
investor receives 2R-D, the other receives D, and the game ends 
Finally, if neither investor makes a withdrawal at date 2 then the 
bank returns R to each investor and the game ends. 

In Section 2.4 we will discuss how to represent this game for
mally. For now, however, we will proceed informally. Let the 
payoffs to the two investors at dates 1 and 2 (as a function of their 
withdrawal decisions at these dates) be represented by the follow
ing pair of normal-form games. Note well that the normal-form 
game for date 1 is nonstandard: if both investors choose not to 
withdraw at date 1 then no payoff is specified; rather, the investors 
proceed to the normal-form game at date 2. 

withdraw 

don't 

withdraw 

don't 

withdraw 

r,r 

2r -D ,D 

don't 

D.2r-D 

next stage 

Datel 

withdraw don't 

R,R 

D,2R-D 

2 K - D , D 

R,R 

Date 2 

J ? !™ l yze t h i s &ame- we work backwards. Consider the nor-

^ S r a T T - i ! ^ 2" S lnCe R > D ( a n d so2R-D>Rl 
unkn tnctY dominates "don't withdraw," so there is a 

TeXe to a nT i ^T * t h iS § a m e : b o t h investors withdraw, 

3j•,K)-Since there is n ° * * ™ * * * «< 
date 1Tas n R ^ V ^ *» * e ™™*-*>™ &™ * 
period version^ ̂ J ^ I < ° {aad so2r~D < r)>this f t 

two-penod game has two pure-strategy Nash 
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withdraw don't 

75 

withdraw 

don't 

r,r 

2 r - D , D 

D,2r-D 

R,R 

Figure 2.2.1. 

equUibria: (1) both investors withdraw, leading to a payoff of (r r) 
(2) both investors do not withdraw, leading to a payoff of (R R{ 
Thus, the original two-period bank-runs game has two subgame-
perfect outcomes (and so does not quite fit within the class of 
games defined in Section 2.2.A): (1) both investors withdraw at 
date 1, yielding payoffs of (r, r); (2) both investors do not with
draw at date 1 but do withdraw at date 2, yielding pavoffs of 
(R,R) at date 2. K / 

The first of these outcomes can be interpreted as a run on 
the bank. If investor 1 believes that investor 2 will withdraw 
at date 1 then investor l's best response is to withdraw as well 
even though both investors would be better off if they waited until 
date 2 to withdraw. This bank-run game differs from the Prisoners' 
Dilemma discussed in Chapter 1 in an important respect: both 
games have a Nash equilibrium that leads to a socially inefficient 
payoff; in the Prisoners' Dilemma this equilibrium is unique (and 
in dominant strategies), whereas here there also exists a second 
equilibrium that is efficient. Thus, this model does not predict 
when bank runs will occur, but does show that they can occur as 
an equilibrium phenomenon. See Diamond and Dybvig (1983) for 
a richer model. 

2.2.C Tariffs and Imperfect International Competition 

We turn next to an application from international economics. Con
sider two identical countries, denoted by / = 1,2. Each country 
has a government that chooses a tariff rate, a firm that produces 
output for both home consumption and export, and consumers 
who buy on the home market from either the home firm or the 
foreign firm. If the total quantity on the market in country i is 
Qi, then the market-clearing price is Pj{Q,) = a ~ Q,-. The firm 
in country i (hereafter called firm /) produces /i, for home con
sumption and ex for export. Thus, Q, = /», + ey The firms have a 
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constant marginal cost, c, and no fixed costs. Thus, the total cost 
of production for firm ;' is C,(h„e,) = c(h; -f efi. The firms also 
incur tariff costs on exports: if firm i exports et to country ;' when 
government;' has set the tariff rate tj, then firm i must pay £;e, to 
government /. 

The timing of the game is as follows. First, the governments 
simultaneously choose tariff rates, t\ and tz- Second, the firms 
observe the tariff rates and simultaneously choose quantities for 
home consumption and for export, (h\,e\) and (/i2>e2)- Third, pay 
offs are profit to firm / and total welfare to government i, where 
total welfare to country i is the sum of the consumers' surplus4 

enjoyed by the consumers in country i, the profit earned by firm i, 
and the tariff revenue collected by government i from firm /: 

itiitu tj, Ih, e„ hj, ej) = [a - (hi + a,)\hi + [a- (e{ + fy)]e, 

- c(hj + ej) -tjeit 

Wj(ti, tjM^u hj- ej) = ^0} + irj(tjr tj, hj, a, hj, e-) + txey 

Suppose the governments have chosen the tariffs t\ and tj. If 
(/;,*,e\.h~2,e\) is a Nash equilibrium in the remaining (two-market) 
game between firms 1 and 2 then, for each i, (h*,ej) must solve 

max 7ri(ti,tj}hi,ei,hj,e*). 
,>o ' ' ' 

Since «•,•(*,-, tj. hx, ei: hj, ej) can be written as the sum of firm i's prof
its on market i (which is a function of hj and ej alone) and firm i's 
profits on market / (which is a function of e,-, hj, and tj alone), 
firm i's two-market optimization problem simplifies into a pair of 
problems, one for each market: h* must solve 

max hi[a- (hi + ef) - c ] , 
h,>Q ' 

and e* must solve 

max g,-[fl - (ej + hf) - c] - f.e,-. 
e,->0 ' ' 

9If a consumer buys a good for price p when she would have been willing to 
pay the value v, then she enjoys a surplus of v - p. Given the inverse demand 
curve Pi(Q,) = " - Qi> if t h e quantity sold on market i is Q„ the aggregate 
consumer surplus can be shown to be (1/2)Q?. 
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Assuming ej < a - c, we have 

^ = ^~ej-c), (2.2.1) 

and assuming hj <a- c - tj, we have 

ei=^(a-hj-c-tj). (2.2.2) 

(The results we derive are consistent with both of these assump
tions.) Both of the best-response functions (2.2.1) and (2.2.2) must 
hold for each i — 1,2. Thus, we have four equations in the four un
knowns (h\, e\, ^ , <?2 )• Fortunately, these equations simplify into 
two sets of two equations in two unknowns. The solutions are 

k?=
a--^L and 4=tz£z»L. (2,.3) 

Recall (from Section 1.2.A) that the equilibrium quantity cho
sen by both firms in the Cournot game is (a - c)/3, but that this 
result was derived under the assumption of symmetric marginal 
costs. In the equilibrium described by (2.2.3), in contrast, the gov
ernments' tariff choices make marginal costs asymmetric (as in 
Problem 1.6). On market i, for instance, firm i's marginal cost is c 
but firmy's is c + f;. Since firm/'s cost is higher it wants to produce 
less. But if firm / is going to produce less, then the market-clearing 
price will be higher, so firm i wants to produce more, in which 
case firm j wants to produce even less. Thus, in equilibrium, h* 
increases in t/ and ej decreases (at a faster rate) in f„ as in (2.2.3). 

Having solved the second-stage game that remains between 
the two firms after the governments choose tariff rates, we can 
now represent the first-stage interaction between the two gov
ernments as the following simultaneous-move game. First, the 
governments simultaneously choose tariff rates t\ and ti. Second, 
payoffs are W/(f,-, tj,h\,e\,h\,e^) for government i = 1,2, where h* 
and e* are functions of tj and tj as described in (2.2.3). We now 
solve for the Nash equilibrium of this game between the govern
ments. 

To simplify the notation, we will suppress the dependence of 
hj on tf and ej on tf. let W?(tittj) denote W^f . -^y^ j ,^ ,^ ,^ ) , the 
payoff to government i when it chooses the tariff rate f,-, govern
ment / chooses tj, and firms i and / then play the Nash equilibrium 
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given in (2.2.3). If (fj,^) i s a Nash equilibrium of this game be
tween the governments then, for each i, t* must solve 

max W?(U*)-

But W*(f,-,f*) equals 

(2(a-c)-t,)2 ( n - c + t,-)2 ( « - c - 2 t ; ) 2 f,.(fl _ c - 2t,) 

18 9 9 + 3 ' 

so 

' < " 3 
for each /, independent of f*. Thus, in this model, choosing a 
tariff rate of (a ~c)/3 is a dominant strategy for each government. 
(In other models, such as when marginal costs are increasing, the 
governments' equilibrium strategies are not dominant strategies.) 
Substituting f * - fi = (a - c)/3 into (2.2.3) yields 

fc, = — ^ — and e,- = — 

as the firms' quantity choices in the second stage. Thus, the 
subgame-perfect outcome of this tariff game is (t* = t£ = (a — c)/3, 
fe* = h-2 = 4(a - c)/9, ej - e2* = {a - c)/9). 

In the subgame-perfect outcome the aggregate quantity on each 
market is 5(a - c)/9. If the governments had chosen tariff rates 
equal to zero, however, then the aggregate quantity on each mar
ket would have been 2(a - c)/3, just as in the Cournot model. 
Thus, the consumers' surplus on market / (which, as noted ear
lier, is simply one-half the square of the aggregate quantity on 
market i) is lower when the governments choose their dominant-
strategy tariffs than it would be if they chose zero tariffs. In fact, 
zero tariffs are socially optimal, in the sense that t\ = t2 = 0 is the 
solution to 

max Wx(tuh) + Wi(t2jx), 

so there is an incentive for the governments to sign a treaty in 
which they commit to zero tariffs (i.e., free trade). (If negative 
tariffs—that is, subsidies—are feasible, the social opt imum is for 
the governments to choose ty — tz ~ — {a - c), which causes the 
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home firm to produce zero for home consumption and to export 
the perfect-competition quantity to the other country.) Thus, given 
that firms i and j play the Nash equilibrium given in (2.2.3) in the 
second stage, the first-stage interaction between the governments 
is a Prisoners' Dilemma: the unique Nash equilibrium is in dom
inant strategies and is socially inefficient. 

2.2.D Tournaments 

Consider two workers and their boss. Worker i (where i = 1 
or 2) produces output y, = ex + eu where e, is effort and e, is noise. 
Production proceeds as follows. First, the workers simultaneously 
choose nonnegative effort levels: <?, > 0. Second, the noise terms 
£i and e2 are independently drawn from a density /(e) with zero 
mean. Third, the workers' outputs are observed but their effort 
choices are not. The workers' wages therefore can depend on their 
outputs but not (directly) on their efforts. 

Suppose the workers' boss decides to induce effort from the 
workers by having them compete in a tournament, as first ana
lyzed by Lazear and Rosen (1981).10 The wage earned by the win
ner of the tournament (i.e., the worker with the higher output) is 
wH; the wage earned by the loser is wL. The payoff to a worker 
from earning wage w and expending effort e is u(w,e) = w-g(e), 
where the disutility of effort, g(e), is increasing and convex (i.e., 
g'{e) > 0 and g"(e) > 0). The payoff to the boss is t/i -\-yi-wn-WL-

We now translate this application into the terms of the class 
of games discussed in Section 2.2.A. The boss is player 1, whose 
action a\ is choosing the wages to be paid in the tournament, 
WH and WL. There is no -player 2. The workers are players 3 
and 4, who observe the wages chosen in the first stage and then 
simultaneously choose actions fla and a±, namely the effort choices 
e\ and e^. (We later consider the possibility that, given the wages 
chosen by the boss, the workers prefer not to participate in the 
tournament and accept alternative employment instead.) Finally, 
the players' payoffs are as given earlier. Since outputs (and so 
also wages) are functions not only of the players actions but also 

10To keep the exposition of this application simple, we ignore several technical 
details, such as conditions under which the worker's first-order condition is 
sufficient. Nonetheless, the analysis involves more probability than others thus 
far. The application can be skipped without loss of continuity. 

file://-/-yi-wn-WL-
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of the noise terms E\ and £;, we work with the players' expected 
payoffs. 

Suppose the boss has chosen the wages wH and wL. If the 
effort pair (e\.c'2) is to be a Nash equilibrium of the remaining 
game between the workers then, for each i, e* must maximize 
worker is expected wage, net of the disutility of effort: e* must 
solve11 

WH Prob{y,u *)} + WL Prob{y,-(e,-) < yfef)} - g(e,) 

= (U'H - WL) Prob {y.lt',) > y;(c*)} + U'L - g(e,-), (2.2.4) 

where }/,(€,) = i', + e,\ The first-order condition for (2.2.4) is 

dProb{yl(el-)>y;(e;)} 
(«'H - Wi) -^ - L ~ = g'(ei). (2.2.5) 

That is, worker i chooses e, such that the marginal disutility of ex
tra effort, g'(e,), equals the marginal gain from extra effort, which 
is the product of the wage gain from winning the tournament, 
ti'H - ii'L, and the marginal increase in the probability of winning. 

By Bayes' rule,12 

Ptabtofe): = Pxob{ei>ej+ej-ei} 

= J Prob{ei > e] + £;- - «?,- | £,}/(£/) ^ , 

= £[l-F(e;-eI + £/)]/(e/)^/, 

11 In writing assume that the noise density f (e) is such that the event 
that the workers' outputs are exactly equal happens with zero probability and JO 
need not be considered in worker i s expected utility. (More formally, we assume 
that the density /(e) is atomless.) In a complete description of the tournament, it 
would be natural (but immaterial) to specify that the winner is determined by a 
coin flip or (equivalently, in this model) that both workers receive (U>H 

"Bayes' rule provides a formula for P(A \ B), the (conditional) probability that 
an event A will occur given that an event B has alreadv occurred. Let P(A), P(^-
and P{A, 8) be the (prior) probabilities (i.e., the probabilities before either AorB 
has had a chance to take place) that A will occur, that B will occur, and that both 
A and B will occur, respectively. Bayes' rule states that P{A \ B) = P(A,B)/PlB)-
That is, the conditional probability of A given B equals the probability that both 
A and B will occur, divided by the prior probability that B will occur. 
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so the first-order condition (2.2.5) becomes 

{WH ~ wL) f f{ej - e, + ej)f{$j)d£j = g'(ei). 

In a symmetric Nash equilibrium (i.e., e\ = e\ = e*), we have 

{WH-WL)\ fiejfde^g'V). (2.2.6) 

Since g{e) is convex, a bigger prize for winning (i.e., a larger value 
of WH - w0 induces more effort, as is intuitive. On the other hand, 
holding the prize constant, it is not worthwhile to work hard when 
output is very noisy, because the outcome of the tournament is 
likely to be determined by luck rather than effort. If e is normally 
distributed with variance a2, for example, then 

which decreases in a, so e* indeed decreases in a. 
We now work backwards to the first stage of the game. Sup

pose that if the workers agree to participate in the tournament 
(rather than accept alternative employment) then they will re
spond to the wages IVH and u>i by playing the symmetric Nash 
equilibrium characterized by (2.2.6). (We thus ignore the possibil
ities of asymmetric equilibria and of an equilibrium in which the 
workers' effort choices are given by the corner solution e\ = ti = 0, 
rather than by the first-order condition (2.2.5).) Suppose also that 
the workers' alternative employment opportunity would provide 
utility 17„. Since in the symmetric Nash equilibrium each worker 
wins the tournament with probability one-half (i.e., Prob{y,(e*) > 
y;(e*)} = 1/2), if the boss intends to induce the workers to partic
ipate in the tournament then she must choose wages that satisfy 

\wH + \iOL-g(e*)>U, (2-2-7) 

Assuming that Ua is low enough that the boss wants to induce 
h e workers to participate in the tournament, she therefore chooses 

wages to maximize expected profit, 2e' -wH~wL, subject to (2.2.7). 
A t the optimum, (2.2.7) holds with equality: 

wL = 2Ua + 2g{e*)~WH- (-22-S) 
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Expected profit then becomes 2e' -2Ua-2g(e'), so the boss wishes 
loose wages such that the induced effort, e", maximizes e* -

•timal induced effort therefore satisfies the first-order 
n gie*) = 1. Substituting this into (2.2.6) implies that the 

optimal prize, wH - wL, solves 

(U>H-WL)[ f{ej)2def = l, 

and (2.2.8) then determines wH and wL themselves. 

2.3 Repeated G a m e s 

In this section we analyze whether threats and promises about 
future behavior can influence current behavior in repeated rela-

Much of the intuition is given in the two-period case; 
a few ideas require an infinite horizon. We also define subgame 
perfect Nash equilibrium for repeated games. This definition is 

In to express for the special case of repeated games than for 
the general dynamic games of complete information we consider 
in Section 2.4.B. We introduce it here so as to ease the exposition 
later. 

2.3.A Theory: Two-Stage Repeated G a m e s 

Consider the Prisoners' Dilemma given in normal form in Fig
ure 2.3.1. Suppose two players play this simultaneous-move game 
twice, observing the outcome of the first play before the second 
play begins, and suppose the payoff for the entire game is sim
ply the SHIM of the payoffs from the two stages (i.e., there is no 

Player 2 

L2 R2 

1,1 

0,5 

5,0 

4,4 

Figure 2.3.1. 
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Ri 
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Li R2 
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1,6 

6,1 

5,5 

Figure 2.3.2. 

discounting). We will call this repeated game the two-stage Pris-
oners' Dilemma. It belongs to the class of games analyzed in Sec
tion 2.2.A. Here players 3 and 4 are identical to players 1 and 2, 
the action spaces A3 and At are identical to A\ and Ai, and the 
payoffs M,-(«i,fl2,«3,«4) are simply the sum of the payoff from the 
first-stage outcome (01,02) and the payoff from the second-stage 
outcome (113,04). Furthermore, the two-stage Prisoners' Dilemma 
satisfies the assumption we made in Section 2.2.A: for each fea
sible outcome of the first-stage game, (01,02), the second-stage 
game that remains between players 3 and 4 has a unique Nash 
equilibrium, denoted by (03(01,02),04(01,02))- In fact, the two-
stage Prisoners' Dilemma satisfies this assumption in the following 
stark way. In Section 2.2.A we allowed for the possibility that the 
Nash equilibrium of the remaining second-stage game depends on 
the first-stage outcome—hence the notation («3 («i, «2), «4 ("i, 12)) 
rather than simply (03,04). (In the tariff game, for example, the 
firms' equilibrium quantity choices in the second stage depend 
on the governments' tariff choices in the first stage.) In the two-
stage Prisoners' Dilemma, however, the unique equilibrium of the 
second-stage game is {L\, hi), regardless of the first-stage outcome. 

Following the procedure described in Section 2.2.A for comput
ing the subgame-perfect outcome of such a game, we analyze the 
first stage of the two-stage Prisoners' Dilemma by taking into ac
count that the outcome of the game remaining in the second stage 
will be the Nash equilibrium of that remaining game—namely, 
(Lb L2) with payoff (1,1). Thus, the players' first-stage interac
tion in the two-stage Prisoners' Dilemma amounts to the one-shot 
game in Figure 2.3.2, in which the payoff pair (1,1) for the second 
stage has been added to each first-stage payoff pair. The game in 
pigure 2.3.2 also has a unique Nash equilibrium: (Lh L2). ThUS/ 

the unique subgame-perfect outcome of the two-stage Prisoners' 
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Dilemma is (Li, L2) in the first stage, followed by (L1# L2) in the 
second stage. Cooperation—that is, (R\, R2)—cannot be achieved 
in either stage of the subgame-perfect outcome. 

This argument holds more generally. (Here we temporarily 
depart from the two-period case to allow for any finite number 
of repetitions, T.) Let G = {At,..., A„;i(\ u„} denote a static 
game of complete information in which players 1 through n si
multaneously choose actions fli through a„ from the action spaces 
A\ through A„, respectively, and payoffs are u\{a\.... ,an) through 
u„(fl] a,,)- The game G will be called the stage game of the 
repeated game. 

Definition Given a stage game G, let G{T) denote the finitely repeated 
game in which G is played T time?. with the outcomes of all preceding plays 
observed before the next play begins. The payoffs for G(T) are simply the 
sum of the payoffs from the T stage games. 

Proposition If the stage game G has a unique Nash equilibrium then, 
for any finite T, the repeated game G{T) has a unique subgame-perfect 
outcome: the Nash equilibrium ofG is played in every stage. 

We now return to the two-period case, but consider the pos
sibility that the stage game G has multiple Nash equilibria, as in 
Figure 2.3.3. The strategies labeled L; and M, mimic the Prisoners' 
Dilemma from Figure 2.3.1, but the strategies labeled R, have been 
added to the game so that there are now two pure-strategy Nash 
equilibria. (Li, L2), as in the Prisoners' Dilemma, and now also (Ri, 
R2). It is of course artificial to add an equilibrium to the Prisoners' 
Dilemma in this way, but our interest in this game is expositional 
rather than economic. In the next section we will see that in
finitely repeated games share this multiple-equilibria spirit even if 
the stage game being repeated infinitely has a unique Nash equi
librium, as does the Prisoners' Dilemma. Thus, in this section we 

13Analogous results hold if the stage game G is a dynamic game of complete 
information. Suppose G is a dynamic game of complete and perfect information 
from the class defined in Section 2.I.A. If G has a unique backwards-induction 
outcome, then G(T) has a unique subgame-perfect outcome: the backwards-
induction outcome of G is played in every stage. Similarly, suppose G is a two-
stage game from the class defined in Section 2.2.A. If G has a unique subgame-
perfect outcome, then G{T) has a unique subgame-perfect outcome: the subgame-
perfect outcome of G is played in every stage. 
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Figure 2.3.3. 

analyze an artificial stage game in the simple two-period frame
work, and thereby prepare for our later analysis of an economi
cally interesting stage game in the infinite-horizon framework. 

Suppose the stage game in Figure 2.3.3 is played twice, with 
the first-stage outcome observed before the second stage begins. 
We will show that there is a subgame-perfect outcome of this re
peated game in which the strategy pair (Mi, M2) is played in the 
first stage.14 As in Section 2.2.A, assume that in the first stage the 
players anticipate that the second-stage outcome will be a Nash 
equilibrium of the stage game. Since this stage game has more 
than one Nash equilibrium, it is now possible for the players 
to anticipate that different first-stage outcomes will be followed 
by different stage-game equilibria in the second stage. Suppose, 
for example, that the players anticipate that {R\, R2) will be the 
second-stage outcome if the first-stage outcome is (Mi, M2), but 
that (Li, L2) will be the second-stage outcome if any of the eight 
other first-stage outcomes occurs. The players' first-stage inter
action then amounts to the one-shot game in Figure 2.3.4, where 
(3,3) has been added to the (Mi, M2)-cell and (1,1) has been added 
to the eight other cells. 

There are three pure-strategy Nash equilibria in the game in 
Figure 2.3.4: (lh L2), (Mi, M2), and (Rh R2). As in Figure 2.3.2, 

tnctly speaking, we have defined the notion of a subgame-perfect outcome 
" y for the class of games defined in Section 2.2.A. The two-stage Prisoner's 

sta
emma b e l o n 6 s t 0 t h i s c l ass because for each feasible outcome of the first-

Ram S T^e t h e r e is a u n i c l u e Nash equilibrium of the remaining second-stage 
does tw°-stage repeated game based on the stage game in Figure 2.3.3 
Nash elong to this class, however, because the stage game has multiple 
outcQ6 lb r i a ' W e wil1 n o t formally extend the definition of a subgame-perfect 
chan ° S° t b a t ** a P P n e s to all two-stage repeated games, both because the 
anr,Q, m definition is minuscule and because even more general definitions 

p P e a n n Sections 2.3.B and 2.4.B. 
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Figure 2.3.4. 

Nash equilibria of this one-shot game correspond to subgame-
perfect outcomes of the original repeated game. Let ((w>,x), (y,z)) 
denote an outcome of the repeated game—(w, x) in the first stage 
and (j/,z) in the second. The Nash equilibrium (Li, L2) in Fig
ure 2.3.4 corresponds to the subgame-perfect outcome ((Li,!*), 
(L1.L2)) in the repeated game, because the anticipated second-
stage outcome is (L\, l2) following anything but (Mi, M2) in the 
first stage. Likewise, the Nash equilibrium (Ri, R2) in Figure 2.3.4 
corresponds to the subgame-perfect outcome ((Ri,R2), (Li,L2)) in 
the repeated game. These two subgame-perfect outcomes of the 
repeated game simply concatenate Nash equilibrium outcomes 
from the stage game, but the third Nash equilibrium in Figure 2.3.4 
yields a qualitatively different result: (Mi, M2) in Figure 2.3.4 cor
responds to the subgame-perfect outcome ((Mi,M2) , (Ri,R2)) i n 

the repeated game, because the anticipated second-stage outcome 
is (Ri, R2) following (Mi, M2). Thus, as claimed earlier, coop
eration can be achieved in the first stage of a subgame-perfect 
outcome of the repeated game. This is an example of a more gen
eral point: if G = {A\,..., An; U\,..., u„} is a static game of com
plete information with multiple Nash equilibria then there may be 
subgame-perfect outcomes of the repeated game G(T) in which, 
for any t < T, the outcome in stage t is not a Nash equilibrium 
of G. We return to this idea in the infinite-horizon analysis in the 
next section. 

The main point to extract from this example is that credible 
threats or promises about future behavior can influence current 
behavior. A second point, however, is that subgame-perfection 
may not embody a strong enough definition of credibility. In de
riving the subgame-perfect outcome ((Mi,M2), (Ri,R2)), for ex
ample, we assumed that the players anticipate that (Ri, R2) will 
be the second-stage outcome if the first-stage outcome is (Mi, M2) 
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and that (Li, l2) will be the second-stage outcome if any of the 
eight other first-stage outcomes occurs. But playing (Lh L2) in the 
second stage, with its payoff of (1.1), may seem silly when (Rh 

R2), with its payoff of (3,3), is also available as a Nash equilib
rium of the remaining stage game. Loosely put, it would seem 
natural for the players to renegotiate.1-'1 If (M,, M2) does not occur 
as the first-stage outcome, so that (U, L2) is supposed to be played 
in the second stage, then each player might reason that bygones 
are bygones and that the unanimously preferred stage-game equi
librium (Ri, R2) should be played instead. But if (Rh R2) j s t o 

be the second-stage outcome after every first-stage outcome, then 
the incentive to play (Mi, M2) in the first stage is destroyed: the 
first-stage interaction between the two players simply amounts to 
the one-shot game in which the payoff (3,3) has been added to 
each cell of the stage game in Figure 2.3.3, so L, is player i's best 
response to My. 

To suggest a solution to this renegotiation problem, we con
sider the game in Figure 2.3.5, which is even more artificial than 
the game in Figure 2.3.3. Once again, our interest in this game is 
expositional rather than economic. The ideas we develop here to 
address renegotiation in this artificial game can also be applied to 
renegotiation in infinitely repeated games; see Farrell and Maskin 
(1989), for example. 

This is loose usage because "renegotiate" suggests that communication (or 
even bargaining) occurs between the first and second stages. If such actions are 
possible, then they should be included in the description and analysis of the 
game. Here we assume that no such actions are possible, so by "renegotiate" we 
have in mind an analysis based on introspection. 
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This stage game adds the strategies P, and Q, to the stage 
game in Figure 2.3.3. There are four pure-strategy Nash equilibria 
of the stage game: (L\, L2) and (R\, R2), and now also (Pi, P2) 
and (Qi, Q2). As before, the players unanimously prefer (R\, R2) 
to (Li, L2). More importantly, there is no Nash equilibrium (x.y) 
in Figure 2.3.5 such that the players unanimously prefer (x, y) to 
(Pi, P2), or (Q1# Q2), or (Ri, R2). We say that ( R v R2) Pardo-
dominates (Li, L2), and that (Pi, P2), (Qi, Q2), and (Ri, R2) are on 
the Pareto frontier of the payoffs to Nash equilibria of the stage 
game in Figure 2.3.5. 

Suppose the stage game in Figure 2.3.5 is played twice, with 
the first-stage outcome observed before the second stage begins. 
Suppose further that the players anticipate that the second-stage 
outcome will be as follows: (Ri, R2) if the first-stage outcome is 
(Mi, M2); (Pi, P2) if the first-stage outcome is (Mi, zv), where w 
is anything but M2; (Qi, Q2) if the first-stage outcome is (*,M2), 
where x is anything but Mi; and (Ri, R2) if the first-stage outcome 
is (y, 2), where y is anything but Mi and 2 is anything but M2 . Then 
((Mi,M2), (Ri,R2)) is a subgame-perfect outcome of the repeated 
game, because each player gets 4 + 3 from playing M, and then R, 
but only 5 + 1/2 from deviating to U in the first stage (and even 
less from other deviations). More importantly, the difficulty in the 
previous example does not arise here. In the two-stage repeated 
game based on Figure 2.3.3, the only way to punish a player for 
deviating in the first stage was to play a Pareto-dominated equi
librium in the second stage, thereby also punishing the punisher. 
Here, in contrast, there are three equilibria on the Pareto frontier-
one to reward good behavior by both players in the first stage, and 
two others to be used not only to punish a player who deviates 
in the first stage but also to reward the punisher. Thus, if punish 
ment is called for in the second stage, there is no other stage-game 
equilibrium the punisher would prefer, so the punisher cannot be 
persuaded to renegotiate the punishment. 

2.3.B Theory: Infinitely Repeated Games 

We now turn to infinitely repeated games. As in the finite-horizon 
case, the main theme is that credible threats or promises about fu
ture behavior can influence current behavior. In the finite-horizon 
case we saw that if there are multiple Nash equilibria of the stage 
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game G then there may be subgame-perfect outcomes of the re
peated game G(T) in which, for any t < T, the outcome of stage t is 
not a Nash equilibrium of G. A stronger result is true in infinitely 
repeated games: even if the stage game has a unique Nash equi
librium, there may be subgame-perfect outcomes of the infinitely 
repeated game in which no stage's outcome is a Nash equilibrium 
ofG. 

We begin by studying the infinitely repeated Prisoners' Dilem
ma. We then consider the class of infinitely repeated games analo
gous to the class of finitely repeated games defined in the previous 
section: a static game of complete information, G, is repeated in
finitely, with the outcomes of all previous stages observed before 
the current stage begins. For these classes of finitely and infinitely 
repeated games, we define a player's strategy, a subgame, and 
a subgame-perfect Nash equilibrium. (In Section 2.4.B we define 
these concepts for general dynamic games of complete informa
tion, not just for these classes of repeated games.) We then use 
these definitions to state and prove Friedman's (1971) Theorem 
(also called the Folk Theorem) > 

Suppose the Prisoners' Dilemma in Figure 2.3.6 is to be re
peated infinitely and that, for each t, the outcomes of the t - 1 
preceding plays of the stage game are observed before the tth stage 
begins. Simply summing the payoffs from this infinite sequence 
of stage games does not provide a useful measure of a player's 
payoff in the infinitely repeated game. Receiving a payoff of 4 in 
every period is better than receiving a payoff of 1 in every period, 
(or example, but the sum of the payoffs is infinity in both cases. 
Recall (from Rubinstein's bargaining model in Section 2.1.D) that 
the discount factor 6 = 1/(1 + r) is the value today of a dollar to 
be received one stage later, where r is the interest rate per stage. 
Given a discount factor and a player's payoffs from an infinite 

'"The original Folk Theorem concerned the payoffs of all the Nash equilibria 
of an infinitely repeated game. This result was called the Folk Theorem be
cause it was widely known among game theorists in the 1950s, even though 
no one had published it. Friedman's (1971) Theorem concerns the payoffs of 
certain subgame-perfect Nash equilibria of an infinitely repeated game, and so 
strengthens the original Folk Theorem by using a stronger equilibrium concept— 
subgame-perfect Nash equilibrium rather than Nash equilibrium. The earlier 
name has stuck, however: Friedman's Theorem (and later results) are sometimes 
called Folk Theorems, even though they were not widely known among game 
theorists before they were published. 



90 DYNAMIC GAMES OF COMPLETE INFORMATION 
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Figure 2.3.6. 

sequence of stage games, we can compute the present value of the 
payoffs—the lump-sum payoff that could be put in the bank now 
so as to yield the same bank balance at the end of the sequence. 

Definition Given the discount factor 8, the present value of the infinite 
sequence of payoffs 7^, n2, ^3, • • • is 

7C\ + 8lT2 + 6 7T3 + 

We can also use 6 to reinterpret what we call an infinitely re
peated game as a repeated game that ends after a random number 
of repetitions. Suppose that after each stage is played a (weighted) 
coin is flipped to determine whether the game will end. If the 
probability is p that the game ends immediately, and therefore 
1 - p that the game continues for at least one more stage, then a 
payoff 7r to be received in the next stage (if it is played) is worth 
only (1 - P)TT/(1 + r) before this stage's coin flip occurs. Likewise, 
a payoff TT to be received two stages from now (if both it and the 
intervening stage are played) is worth only (1 - p)2n/{l + rf be
fore this stage's coin flip occurs. Let 6 = (1 - p)/(l + r). Then the 
present value ^ + 8n2 + 62n3 + •-• reflects both the time-value of 
money and the possibility that the game will end. 

Consider the infinitely repeated Prisoners' Dilemma in which 
each player's discount factor is 6 and each player's payoff in the 
repeated game is the present value of the player's payoffs from 
the stage games. We will show that cooperation—that is, (Rv 
R2)-can occur in every stage of a subgame-perfect outcome of 
the infinitely repeated game, even though the only Nash equilib
rium in the stage game is noncooperation—that is, (Llf L2Y The 
argument is in the spirit of our analysis of the two-stage repeated 
game based on Figure 2.3.3 (the stage game in which we added a 
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second Nash equilibrium to the Prisoners' Dilemma): if the players 
cooperate today then they play a high-payoff equilibrium tomor
row; otherwise they play a low-payoff equilibrium tomorrow. The 
difference between the two-stage repeated game and the infinitely 
repeated game is that here the high-payoff equilibrium that might 
be played tomorrow is not artificially added to the stage game but 
rather represents continuing to cooperate tomorrow and thereafter. 

Suppose player i begins the infinitely repeated game by co
operating and then cooperates in each subsequent stage game if 
and only if both players have cooperated in every previous stage. 
Formally, player ;'s strategy is: 

Play Ri in the first stage. In the tth stage, if the outcome 
of all t -1 preceding stages has been (Ri, R2) then play 
Rr, otherwise, play L,. 

This strategy is an example of a trigger strategy, so called because 
player i cooperates until someone fails to cooperate, which triggers 
a switch to noncooperation forever after. If both players adopt 
this trigger strategy then the outcome of the infinitely repeated 
game will be (Ki, R2) in every stage. We first argue that if 8 is 
close enough to one then it is a Nash equilibrium of the infinitely 
repeated game for both players to adopt this strategy. We then 
argue that such a Nash equilibrium is subgame-perfect, in a sense 
to be made precise. 

To show that it is a Nash equilibrium of the infinitely repeated 
game for both players to adopt the trigger strategy, we will assume 
that player i has adopted the trigger strategy and then show that, 
provided 8 is close enough to one, it is a best response for player; 
to adopt the strategy also. Since player i will play L, forever once 
one stage's outcome differs from (Ri, R2), player ;'s best response 
is indeed to play L, forever once one stage's outcome differs from 
\R], R2). It remains to determine player j's best response in the 
first stage, and in any stage such that all the preceding outcomes 
have been (Rlt R2). Playing Lj will yield a payoff of 5 this stage 
but will trigger noncooperation by player i (and therefore also by 
Player;) forever after, so the payoff in every future stage will be 1. 
Since 1 + 8 + 82 + • • • = 1/(1 - S), the present value of this sequence 
o f payoffs is 

5 + 6 - 1 + 62 • 1 + • • • = 5 + r-^~. . 
1—0 
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Alternatively, playing R, will yield a payoff of 4 in this stage and 
will lead to exactly the same choice between L, and R, in the next 
stage. Let V denote the present value of the infinite sequence of 
payoffs player / receives from making this choice optimally (now 
and every time it arises subsequently). If playing R, is optimal 
then 

or V - , because playing R, leads to the same choice next 
stage. If playir primal then 

as derived earlier. So playing R, is optimal if and only if 

r (2-3' 
Thus, in the first stage, and in any stage such that 

all the preceding outcomes have been (Ri, R2), player fs optimal 
acti that player i has adopted the trigger strategy) is R, if 
and only -ombining this observation with the fact that 

est response is to play L} forever once one stage's outcome 
differs from iR\, Ri), we have that it is a Nash equilibrium for 
both players to play the trigger strategy if and only if 6 > 1/4. 

We now want to argue that such a Nash equilibrium is sub-
game-perfect. To do so, we define a strategy in a repeated game, 
a subgame in a repeated game, and a subgame-perfect Nash equi
librium in a repeated game. In order to illustrate these concepts 

simple examples from the previous section, we will define 
them for both finitely and infinitely repeated games. In the previ-

5ection we defined the finitely repeated game G(T) based on a 
stage game G —a static game of complete 
information in which players 1 through n simultaneously choose 
actions a-, through an from the action spaces A] through An, re
spectively, and p'- .. an) through un(«i.-..,a„). We 
now define the analogous infinitely repeated game.17 

!7One can of course also define a repeated game based on a dynamic stage 
game. In this section we restrict attention to static stage games so as to present 
the main ideas in a simple way. The applications in Sections 2-3.D and 23.E are 
repeated games based ge games. 
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Definition Given a stage game G, let G(oc.<5) denote the infinitely 
repeated game in which G is repeated forever and the players share the 
discount factor b. For each t, the outcomes of the t - 1 preceding plays of the 
stage game are observed before the r"1 stage begins. Each player's payoff 

the present value of the player's payoffs from the infinite 
sequence of stage games. 

In any game (repeated or otherwise), a player's strategy is a 
complete plan of action—it specifies a feasible action for the player 
in every contingency in which the player might be called upon to 
act. Put slightly more colorfully, if a player left a strategy with 
his or her lawyer before the game began, the lawyer could play 
the game for the player without ever needing further instructions 
as to how to play. In a static game of complete information, for 
example, a strategy is simply an action. (This is why we described 
such a game as G = {Si Sn;u\ u„\ in Chapter 1 but can 
also describe it as G = {A-\ An; U] u„} here: in a static game 
of complete information, player i's strategy space 5, is simply the 
action space A,.) In a dynamic game, however, a strategy is more 
complicated. 

Consider the two-stage Prisoners' Dilemma analyzed in the 
previous section. Each player acts twice, so one might think that 
a strategy is simply a pair of instructions (b.c), where b is the 
first-stage action and c is the second-stage action. But there are 
four possible first-stage outcomes—(Lj, L2), (L\, Ri), (R\, Li), and 
(R\, Ri)—and these represent four separate contingencies in which 
each player might be called upon to act. Thus, each player's strat
egy consists of five instructions, denoted (v.w.x.y,z), where v is 
the first-stage action and w, x, y, and z are the second-stage actions 
to be taken following the first-stage outcomes (L\, Li), (L\, R2), (R\, 
Li), and (R]f R2), respectively. Using this notation, the instructions 
"play b in the first stage, and play c in the second stage no matter 
what happens in the first" are written (b.c.c.c.c), but this nota
tion also can express strategies in which the second-stage action is 
contingent on the first-stage outcome, such as (b.c.ccb), which 
means "play b in the first stage, and play c in the second stage 
unless the first-stage outcome was (R\, R2), in which case play b." 

wise, in the two-stage repeated game based on Figure 2.3.3, 
each player's strategy consists of ten instructions—a first-stage ac
tion and nine contingent second-stage actions, one to be played fol
lowing each possible first-stage outcome. Recall that in analyzing 
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this two-stage repeated game we considered a strategy in which 
the player's second-stage action was contingent on the first-stage 
outcome: play M, in the first stage, and play L, in the second stage 
unless the first-stage outcome was (Mi, M2), in which case play 
R, in the second stage. 

In the finitely repeated game G(T) or the infinitely repeated 
game G(oo, 6), the history of play through stage t is the record of the 
players' choices in stages 1 through t. The players might have 
chosen (fln,...,flni) in stage 1, {an,---,an2) in stage 2, . . . , and 
(flif,...,flWf) in stage t, for example, where for each player / and 
stage s the action <?„ belongs to the action space Aj. 

Definition In the finitely repeated game G(T) or the infinitely repeated 
game G(oo, 8), a player's strategy specifies the action the player will take 
in each stage, for each possible history of play through the previous stage. 

We turn next to subgames. A subgame is a piece of a game— 
the piece that remains to be played beginning at any point at which 
the complete history of the game thus far is common knowledge 
among the players. (Later in this section we give a precise defini
tion for the repeated games G{T) and G(oo, 6); in Section 2.4.B, we 
give a precise definition for general dynamic games of complete 
information.) In the two-stage Prisoners' Dilemma, for example, 
there are four subgames, corresponding to the second-stage games 
that follow the four possible first-stage outcomes. Likewise, in 
the two-stage repeated game based on Figure 2.3.3, there are nine 
subgames, corresponding to the nine possible first-stage outcomes 
of that stage game. In the finitely repeated game G(T) and the 
infinitely repeated game G(oo,<5), the definition of a strategy is 
closely related to the definition of a subgame: a player 's strategy 
specifies the actions the player will take in the first stage of the 
repeated game and in the first stage of each of its subgames. 

Definition In the finitely repeated game G(T), a subgame beginning at 
stage t + \is the repeated game in which G is played T - t times, denoted 
G{T - f). There are many subgames that begin at stage t + l, one for each 
of the possible histories of play through stage t. In the infinitely repeated 
game G(oo, 6), each subgame beginning at stage t + 1 is identical to the 
original game G(oo,<5). As in the finite-horizon case, there are as many 
subgames beginning at stage t +1 ofG(oo, 6) as there are possible histories 
of play through stage t. 
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Note well that the tth stage of a repeated game taken on its 
own is not a subgame of the repeated game (assuming f < T in 
the finite case). A subgame is a piece of the original game that 
not only starts at a point where the history of play thus far is 
common knowledge among the players, but also includes all the 
moves that follow this point in the original game. Analyzing the 
tth stage in isolation would be equivalent to treating the tth stage 
as the final stage of the repeated game. Such an analysis could 
be conducted but would not be relevant to the original repeated 
game. 

We are now ready for the definition of subgame-perfect Nash 
equilibrium, which in turn depends on the definition of Nash equi
librium. The latter is unchanged from Chapter 1, but we now 
appreciate the potential complexity of a player's strategy in a dy
namic game: in any game, a Nash equilibrium is a collection of 
strategies, one for each player, such that each player's strategy is 
a best response to the other players' strategies. 

Definition (Selten 1965): A Nash equilibrium is subgame-perfect if 
the players' strategies constitute a Nash equilibrium in every subgame. 

Subgame-perfect Nash equilibrium is a refinement of Nash equilib
rium. That is, to be subgame-perfect, the players' strategies must 
first be a Nash equilibrium and must then pass an additional test. 

To show that the trigger-strategy Nash equilibrium in the in
finitely repeated Prisoners' Dilemma is subgame-perfect, we must 
show that the trigger strategies constitute a Nash equilibrium on 
every subgame of that infinitely repeated game. Recall that every 
subgame of an infinitely repeated game is identical to the game as 
a whole. In the trigger-strategy Nash equilibrium of the infinitely 
repeated Prisoners' Dilemma, these subgames can be grouped into 
two classes: (i) subgames in which all the outcomes of earlier 
stages have been (Ri, R2), and (ii) subgames in which the out
come of at least one earlier stage differs from CRl7 R2). If the 
players adopt the trigger strategy for the game as a whole, then 
(i) the players' strategies in a subgame in the first class are again 
the trigger strategy, which we have shown to be a Nash equilib
rium of the game as a whole, and (ii) the players' strategies in a 
subgame in the second class are simply to repeat the stage-game 
equilibrium (L^, L2) forever, which is also a Nash equilibrium of 
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the garr - T ^ - m e trigger-strategy Nash equilibrium 
of the infinitely repeated Prisoners' Dilemma is subgame-perfect. 

nalogous arguments in the infinitely repeated 
game G Tiese arguments lead to Friedman's (1971) Theo
rem for seated games. To state the theorem, we need 

: final definitions. First, we call the payoffs {xi xn) feasi
ble in the stage game G if the\' are a convex combination (i.e., a 

ghted average, where the weights are all nonnegative and sum 
to one) of the pure-strategy payoffs of G. The set of feasible pay
offs for the Prisoners' Dilemma in Figure 2.3.6 is the shaded region 
in Figure 2.3.7. The pure-strate, 1.1 , 0.5 4.4), and 

are feasible. Other feas: offs include the pairs (x.x\ 
for 1 < x < 4, which result from weighted averages of (1.1) and 

and the pair; :r y - z = 5 and 0 < y < 5, which 
result from weighted averages c : r J). The other pairs 

of) the shaded region in Figure 2.3.7 are weighted 
averages of more than two pure-strategy pavoffs. To achieve a 
weighted average of pure-strategy pavoffs, trie players could use 
a public randomizing c y playing (L\, Rj) or (R], L2) de
pending on a flip of a (fair) coin, for example, they achieve the 
expected payor 
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The second definition we need in order to state Friedman's 
Theorem is a rescaling of the players' payoffs. We continue to 
define each player's payoff in the infinitely repeated game G 
to be the present value of the player's infinite sequence of stage-

; payoffs, but it is more convenient to express this present 
e in terms of the average payoff from the same infinite sequence 
age-game payoffs—the payoff that would have to be received 

in every stage so as to yield the same present value. Let the 
discount factor be 8. Suppose the infinite sequence of payoffs 

... has a present value of V. If the payoff T were received 
in every stage, the present value would be ?r/(l — 6). For TT to be 

payoff from the infinite sequence ^1,^2.-3.... with 
?unt factor 6, these two present values must be equal, s o i = 

1-6). That is, the average payoff is (1 - 6) times the present 
ue. 

Definition Given the discount factor 6, the average payoff of the infi-
tquenceofpa] ..is 

(i-*)fV-v 

The advantage of the average payoff over the present value is that 
the former is directly comparable to the payoffs from the stage 
game. In the Prisoners' Dilemma in Figure 2.3.6, for example, 
both players might receive a payoff of 4 in every period. Such 
an infinite sequence of payoffs has an average payoff of 4 but 
a present value of 4/(1 — 6). Since the average payoff is just a 
rescaling of the present value, however, maximizing the average 

rf is equivalent to maximizing the present value. 
We are at last ready to state the main result in our discussion 

of infinitely repeated games: 

Theorem (Friedman 1971): Let G be a finite, static game of complete 
information. Let (ei en) denote the payoffs from a Nash equilibrium of 
G, and let (^ — ,*„) denote any other feasible payoffs from G. Ifxi > <?,-
for every player i and if 6 is sufficiently close to one, then there exists a 
subgame-perfect Nash equilibrium of the infinitely repeated game G(co, 6) 
that achieves {Xl xn) as the overate payoff. * 
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The proof of this theorem parallels the arguments already given 
for the infinitely repeated Prisoners' Dilemma, so we relegate it 
to Appendix 2.3.B. It is conceptually straightforward but slightly 
messier notationally to extend the Theorem to well-behaved stage 
games that are neither finite nor static; see the applications in the 
next three sections for examples. In the context of the Prisoners' 
Dilemma in Figure 2.3.6, Friedman's Theorem guarantees that any 
point in the cross-hatched region in Figure 2.3.8 can be achieved as 
the average payoff in a subgame-perfect Nash equilibrium of the 
repeated game, provided the discount factor is sufficiently close 

me. 
We concludi action by sketching two further develop-
nts in the theory of infinitely repeated games, both of which 

are obscured by the following special feature of the Prisoners' 
Dilemma. In the (one-shot; Prisoners' Dilemma in Figure 2.3.6, 
pla) i guarantee receiving at least the Nash equilibrium 

ournot duopoly game-
bed in Section 1.2.A), in contrast, a firm cannot 

iving the Nash-equilibrium profit by producing the 
N':: «n quantity; rati only profit a firm can guar-

, by pro o. Given an arbitrary 
let n denote player z's reservation payoff—the largest 
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payoff player i can guarantee receiving, no matter what the other 
players do. It must be that r,- < e, (where ex is player fs Nash-
equilibrium payoff used in Friedman's Theorem), since if r* were 
greater than e„ it would not be a best response for player i to play 
his or her Nash-equilibrium strategy. In the Prisoners' Dilemma, 
r, = e„ but in the Cournot duopoly game (and typically), r, < e,. 

Fudenberg and Maskin (1986) show that for two-player games, 
the reservation payoffs (r\, r2) can replace the equihbrium payoffs 
(e-[, e{) in the statement of Friedman's Theorem. That is, if (x\, 
y.i) is a feasible payoff from G, with x, > r, for each i, then for 
t sufficiently close to one there exists a subgame-perfect Nash 
equilibrium of G(oc, b) that achieves (x\, xj) as the average payoff, 
even if x. < e, for one or both of the players. For games with more 
than two players, Fudenberg and Maskin provide a mild condition 
under which the reservation payoffs (r\,..., r„) can replace the 
equilibrium payoffs {e\,.--.. ,e„) in the statement of the Theorem. 

A complementary question is also of interest: what average 
payoffs can be achieved by subgame-perfect Nash equilibria when 
the discount factor is not "sufficiently close to one"? One way to 
approach this question is to consider a fixed value of 6 and de
termine the average payoffs that can be achieved if the players 
use trigger strategies that switch forever to the stage-game Nash 
equilibrium after any deviation. Smaller values of 6 make a pun
ishment that will begin next period less effective in deterring a 
deviation this period. Nonetheless, the players typically can do 
better than simply repeating a stage-game Nash equihbrium. A 
second approach, pioneered by Abreu (1988), is based on the idea 
that the most effective way to deter a player from deviating from a 
proposed strategy is to threaten to administer the strongest credi
ble punishment should the player deviate (i.e., threaten to respond 
to a deviation by playing the subgame-perfect Nash equihbrium 
of the infinitely repeated game that yields the lowest payoff of 
all such equilibria for the player who deviated). In most games, 
switching forever to the stage-game Nash equilibrium is not the 
strongest credible punishment, so some average payoffs can be 
achieved using Abreu's approach that cannot be achieved using 
the trigger-strategy approach. In the Prisoners' Dilemma, how-

/er, the stage-game Nash equilibrium yields the reservation pay
offs (that is, e(- = r,), so the two approaches are equivalent. We 
give examples of both of these approaches in the next section. 
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Appendix 2.3.B 

In this appendix we prove Friedman's Theorem. Let (flcl,... ,aat) 
be the Nash equilibrium of G that yields the equilibrium payoffs 
U'i en). Likewise, let (axi....,axn) be the collection of actions 
that yields the feasible payoffs (x\ xn). (The latter notation is 
only suggestive because it ignores the public randomizing device 
typically necessary to achieve arbitrary feasible payoffs.) Consider 
the following trigger strategy for player i: 

Play axi in the first stage. In the tth stage, if the outcome 
of all f — 1 preceding stages has been (ax\,..., am) then 
play flx,; otherwise, play a^. 

If both players adopt this trigger strategy then the outcome of 
every stage of the infinitely repeated game will be (flxi,... ,«*,,), 
with (expected) payoffs {x\ x„). We first argue that if 8 is close 
enough to one, then it is a Nash equilibrium of the repeated game 
for the players to adopt this strategy. We then argue that such a 
Nash equilibrium is subgame-perfect. 

Suppose that all the players other than player i have adopted 
this trigger strategy. Since the others will play (ae\,... ,ae,_]. 
fle,,-+i Ben) forever once one stage's outcome differs from 
(<JXI . . . . . Am), player i's best response is to play a^ forever once one 
stage's outcome differs from (ax\ • <*xn)- It remains to determine 
player i's best response in the first stage, and in any stage such 
that all the preceding outcomes have been {ax\, • • • ,«xn)- Let adi be 
player i's best deviation from {ax\ ,am). That is, adj solves 

™ ? M/(«xl «v..-i. fli.flx.i+l, • • -1*xn)-

Let dj be i's payoff from this deviation: d, = Ut(ax\,... ,ax^-\.adl. 
dxj+i ax„). (Again, we ignore the role of the randomizing de
vice: the best deviation and its payoff may depend on which 
pure strategies the randomizing device has prescribed.) We have 
di >Xj = Uiiax\i...iaXii-i,aXi,aXii+i,...iaxn) > ex = Uj{aei,...,am). 

Playing adi will yield a payoff of rf, at this stage but will trig
ger (aei..... fle,i_ii fle.i+i, • • -, am) by the other players forever after, 
to which the best response is aei by player i, so the payoff in 
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every future 
of payoffs is 

future stage will be er The present value of this sequence 

o 6 
di + 6 -ei + 6' • e,- + • • • = d{ + ^—--c,-. 

(Since any deviation triggers the same response by the other play
ers the only deviation we need to consider is the most profitable 
one.) Alternatively, playing axi will yield a payoff of x, this stage 
and will lead to exactly the same choice between adi and axi in 
the next stage. Let V, denote the present value of the stage-game 
payoffs player i receives from making this choice optimally (now 
and every time it arises subsequently). If playing axl is optimal, 

then 
Vt = Xi + 8V,t 

or Vi = x,/(l - 6). If playing adl is optimal, then 

XT J 6 

Vi = di + —6
ei> 

as derived previously. (Assume that the randomizing device is 
serially uncorrelated. It then suffices to let d, be the highest of the 
payoffs to player i's best deviations from the various pure-strategy 
combinations prescribed by the randomizing device.) So playing 
'hi is optimal if and only if 

> di + -—-ceh 

or 

8>d~f^. 
- dj - e{ 

Tnus, in the first stage, and in any stage such that all the preceding 
outcomes have been (a t l , . . .,axn), player i's optimal action (given 
that the other players have adopted the trigger strategy) is ax, if 
a n d o n l y i f 6 > ( d , - . x , ) / ( r f , - e , ) . 

Combining this observation with the fact that i's best response 
0 Play ari forever once one stage's outcome differs from (fl t],..., 

fl«i), we have that it is a Nash equilibrium for all the players to 
P!ay the trigger strategy if and only if 

6 > max -. • 
" < di - e{ 
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Since d, > x, > eir it must be that (dj-Xj)/(dj-ej) < 1 for every i, so 
the maximum of this fraction across all the players is also strictly 
less than one. 

It remains to show that this Nash equilibrium is subgame-
perfect. That is, the trigger strategies must constitute a Nash equi
librium in every subgame of G(oo, 6). Recall that every subgame of 
G(oo,6) is identical to G(oo,<5) itself. In the trigger-strategy Nash 
equilibrium, these subgames can be grouped into two classes: 
(i) subgames in which all the outcomes of earlier stages have been 
(aX],...,ax„), and (ii) subgames in which the outcome of at least 
one earlier stage differs from (fl*i,...,fl:rn)- If the players adopt 
the trigger strategy for the game as a whole, then (i) the players' 
strategies in a subgame in the first class are again the trigger strat
egy, which we have just shown to be a Nash equilibrium of the 
game as a whole, and (ii) the players' strategies in a subgame in 
the second class are simply to repeat the stage-game equilibrium 
(rt,i,... ,ac„) forever, which is also a Nash equilibrium of the game 
as a whole. Thus, the trigger-strategy Nash equilibrium of the 
infinitely repeated game is subgame-perfect. 

2.3.C Collusion between Cournot Duopol i s ts 

Friedman (1971) was the first to show that cooperation could be 
achieved in an infinitely repeated game by using trigger strategies 

that switch forever to the stage-game Nash equilibrium follow
ing any deviation. The original application was to collusion in a 

Cournot oligopoly, as follows. 
Recall the static Cournot game from Section 1.2. A: If the aggre

gate quantity on the market is Q = q\ +qi, then the market-clearing 
price is P(Q) =a-Q, assuming Q < a. Each firm has a marginal 
cost of c and no fixed costs. The firms choose quantities simulta
neously. In the unique Nash equilibrium, each firm produces the 

quantity {a - c)/3, which we will call the Cournot quantity and 
denote by qc. Since the equilibrium aggregate quantity, 2(a - c)/3, 
exceeds the monopoly quantity, qm = (a-c)/2, both firms would b e 

better off if each produced half the monopoly quantity, q\ = <W2. 
Consider the infinitely repeated game based on this Cournot 

stage game when both firms have the discount factor 6. V V e ^ ° ^ 
compute the values of 6 for which it is a subgame-perfect Na n 
equilibrium of this infinitely repeated game for both firms to p y 
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the following trigger strategy: 

Produce half the monopoly quantity, qm/2, in the first 
period. In the tth period, produce qm/2 if both firms 
have produced qm/2 in each of the t - 1 previous peri
ods; otherwise, produce the Cournot quantity, qc-

Since the argument parallels that given for the Prisoners' Dilemma 
in the previous section, we keep the discussion brief. 

The profit to one firm when both produce q,„/2 is (a - c)2/8, 
which we will denote by irm/2. The profit to one firm when both 
produce qc is (a — c)2/9, which we will denote by 7rc. Finally, if 
finn i is going to produce qm/2 this period then the quantity that 
maximizes firm ; 's profit this period solves 

max [a-qj--qm-cjqj. 

The solution is qj = 3(« - c ) / 8 , with associated profit of 9(a-c)2/64, 
which we denote by nd {"d" for deviation). Thus, it is a Nash 
equilibrium for both firms to play the trigger strategy given earlier 
provided that 

analogous to (2.3.1) in the Prisoners' Dilemma analysis. Substitut
ing the values of TT,„, 7rd, and ixc into (2.3.2) yields 6 > 9/17. For 
the same reasons as in the previous section, this Nash equilibrium 
is subgame-perfect. 

We can also ask what the firms can achieve if 6 < 9/17. We 
will explore both approaches described in the previous section. 
We first determine, for a given value of 6, the most-profitable 
quantity the firms can produce if they both play trigger strategies 
that switch forever to the Cournot quantity after any deviation. 
We know that such trigger strategies cannot support a quantity as 
low as half the monopoly quantity, but for any value of 6 it is a 
subgame-perfect Nash equilibrium simply to repeat the Cournot 
quantity forever. Therefore, the most-profitable quantity that trig
ger strategies can support is between q,„/2 and qc. To compute 
this quantity, consider the following trigger strategy: 

Produce q* in the first period. In the t"' period, pro
duce q* if both firms have produced q* in each of the 
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t - 1 previous periods; otherwise, produce the Cournot 
quantity, qc-

The profit to one firm if both play q* is (a - 2q* - c)q*, which we 
will denote by w'. If firm / is going to produce q* this period, then 
the quantity that maximizes firm /'s profit this period solves 

max (a - qj - q* - c)q:. 

The solution is qj - {a - q' - c)/2, with associated profit of (a 
q* - c)2/4, which we again denote by nd. It is a Nash equilibrium 
for both firms to play the trigger strategy given above provided 
that 

1 h 

Solving the resulting quadratic in q* shows that the lowest value 
of q' for which the trigger strategies given above are a subgame-
perfect Nash equilibrium is 

' = 3(9^7) (""C) ' 

which is monotonically decreasing in 6, approaching qm/2 as 6 
approaches 9/17 and approaching qc as <5 approaches zero. 

We now explore the second approach, which involves threaten
ing to administer the strongest credible punishment. Abreu (1986) 
applies this idea to Cournot models more general than ours us
ing an arbitrary discount factor; we simply show that Abreu's 
approach can achieve the monopoly outcome in our model when 
6 = 1/2 (which is less than 9/17). Consider the following "two-
phase" (or "carrot-and-stick") strategy: 

Produce half the monopoly quantity, qm/2, in the first 
period. In the t,h period, produce qm/2 if both firms 
produced q,„/2 in period r - 1, produce qm/2 if both 
firms produced x in period f - 1, and otherwise pro
duce x. 

This strategy involves a (one-period) punishment phase in which 
the firm produces x and a (potentially infinite) collusive phase in 
which the firm produces qm/2. It either firm deviates from the 
collusive phase, then the punishment phase begins. If either firm 
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deviates from the punishment phase, then the punishment phase 
begins again. If neither firm deviates from the punishment phase, 
then the collusive phase begins again. 

The profit to one firm if both produce x is (a-2x~c)x, which we 
will denote by TT(X). Let V(x) denote the present value of receiving 

this period and half the monopoly profit forever after: 

V(x) = w{x) + — • -*„. 

If firm i is going to produce x this period, then the quantity that 
maximizes firm /'s profit this period solves 

max (a-qj-x- c)qy 

The solution is qj = (a - x - c)/2, with associated profit of (a - x -
c)2/4, which we denote by 7rdp(x), where dp stands for deviation 
from the punishment. 

If both firms play the two-phase strategy above, then the sub-
games in the infinitely repeated game can be grouped into two 
classes: (i) collusive subgames, in which the outcome of the pre
vious period was either (qm/2, qm/2) or (x,x), and (ii) punishment 
subgames, in which the outcome of the previous period was nei
ther (qm/2, qm/2), nor (x,x). For it to be a subgame-perfect Nash 
equilibrium for both firms to play the two-phase strategy, it must 
be a Nash equilibrium to obey the strategy in each class of sub-
games. In the collusive subgames, each firm must prefer to receive 
half the monopoly profit forever than to receive nd this period and 
the punishment present value V(x) next period: 

1 -l*m>*d + mx)- (2-3.3) 
l -<5 2 ^ ^ ^ ^ 

n the punishment subgames, each firm must prefer to adminis-
t e r t n e punishment than to receive 7rrfp this period and begin the 
punishment again next period: 

V(x)>7rdp(x) + 6V(x). (2.3.4) 

Substituting for V(x) in (2.3.3) yields 

ty^"1 ~*(xn ^nd~2nm' 
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That is, the gain this period from deviating must not exceed the 
discounted value of the loss next period from the punishment 
(Provided neither firm deviates from the punishment phase, there 
is no loss after next period, since the punishment ends and the 
firms return to the monopoly outcome, as though there had been 
no deviation.) Likewise, (2.3.4) can be rewritten as 

t (\nm ~-x(x)) >7Tdp-n{x), 

with an analogous interpretation. For 6 = 1/2, (2.3.3) is satisfied 
provided x/(a - c) is not between 1/8 and 3/8, and (2.3.4) is sat
isfied if x/{a - c) is between 3/10 and 1/2. Thus, for 6 - 1/2, the 
two-phase strategy achieves the monopoly outcome as a subgame-

ct Nash equilibrium provided that 3/8 < x/(a - c) < 1/2. 
There are many other models of dynamic oligopoly that en

rich the simple model developed here. We conclude this section 
by briefly discussing two classes of such models: state-variable 
models, and imperfect-monitoring models. Both classes of mod
els have many applications beyond oligopoly; for example, the 
efficiency-wage model in the next section is an example of imper
fect monitoring. 

Rotemberg and Saloner (1986, and Problem 2.14) study col
lusion over the business cycle by allowing the intercept of the 
demand function to fluctuate randomly across periods. In each 
period, all firms observe that period's demand intercept before tak
ing their actions for that period; in other applications, the players 
could observe the realization of another state variable at the begin
ning of each period. The incentive to deviate from a given strategy 
thus depends both on the value of demand this period and on the 
likely realizations of demand in future periods. (Rotemberg and 
Saloner assume that demand is independent across periods, so the 
latter consideration is independent of the current value of demand, 
but later authors have relaxed this assumption.) 

Green and Porter (1984) study collusion when deviations can 
not be detected perfectly: rather than observing the other firms 
quantity choices, each firm observes only the market-clearing price, 
which is buffeted by an unobservable shock each period. In this 
setting, firms cannot tell whether a low market-clearing price oc
curred because one or more firms deviated or because there was an 
adverse shock. Green and Porter examine trigger-price equilibria. 
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in which any price below a critical level triggers a punishment 
period during which all firms play their Cournot quantities. In 
equilibrium, no firm ever deviates. Nonetheless, an especially bad 
shock can cause the price to fall below the critical level, triggering 
a punishment period. Since punishments happen by accident, in
finite punishments of the kind considered in the trigger-strategy 
analysis in this section are not optimal. Two-phase strategies of 
the kind analyzed by Abreu might seem promising; indeed, Abreu, 
Pearce, and Stacchetti (1986) show that they can be optimal. 

2.3.D Efficiency Wages 

In efficiency-wage models, the output of a firm's work force de
pends on the wage the firm pays. In the context of developing 
countries, higher wages could lead to better nutrition; in devel
oped countries, higher wages could induce more able workers to 
apply for jobs at the firm, or could induce an existing work force 
to work harder. 

Shapiro and Stiglitz (1984) develop a dynamic model in which 
firms induce workers to work hard by paying high wages and 
threatening to fire workers caught shirking. As a consequence of 
these high wages, firms reduce their demand for labor, so some 
workers are employed at high wages while others are (involuntar
ily) unemployed. The larger the pool of unemployed workers, the 
longer it would take a fired worker to find a new job, so the threat 
of firing becomes more effective. In the competitive equilibrium, 
the wage w and the unemployment rate u just induce workers 
not to shirk, and firms' labor demands at w result in an unem
ployment rate of exactly u. We study the repeated-game aspects 
of this model (but ignore the competitive-equilibrium aspects) by 
analyzing the case of one firm and one worker. 

Consider the following stage game. First, the firm offers the 
worker a wage, w. Second, the worker accepts or rejects the 
firm's offer. If the worker rejects w, then the worker becomes self-
employed at wage WQ. If the worker accepts w, then the worker 
chooses either to supply effort (which entails disutility e) or to 
shirk (which entails no disutility). The worker's effort decision is 
not observed by the firm, but the worker's output is observed by 
both the firm and the worker. Output can be either high or low; 
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for simplicity, we take low output to be zero and so write high 
output as y > 0. Suppose that if the worker supplies effort then 
output is sure to be high, but that if the worker shirks then output 
is high with probability p and low with probability 1 - p. T\\u% 

in this model, low output is an incontrovertible sign of shirking,' 
If the firm employs the worker at wage w, then the players' 

payoffs if the worker supplies effort and output is high are y ~w 
for the firm and w - e for the worker. If the worker shirks, then 
e becomes 0; if output is low, then y becomes 0. We assume that 
y-e > WQ > py, so that it is efficient for the worker to be employed 
by the firm and to supply effort, and also better that the worker 
be self-employed than employed by the firm and shirking. 

The subgame-perfect outcome of this stage game is rather bleak: 
because the firm pays w in advance, the worker has no incentive to 
supply effort, so the firm offers w = 0 (or any other w < WQ) and 
the worker chooses self-employment. In the infinitely repeated 
game, however, the firm can induce effort by paying a wage iv in 
excess of WQ and threatening to fire the worker if output is ever 
low. We show that for some parameter values, the firm finds it 
worthwhile to induce effort by paying such a wage premium. 

One might wonder why the firm and the worker cannot sign 
a compensation contract that is contingent on output, so as to 
induce effort. One reason such contracts might be infeasible is 
that it is too difficult for a court to enforce them, perhaps because 
the appropriate measure of output includes the quality of output, 
unexpected difficulties in the conditions of production, and so 
on. More generally, output-contingent contracts are likely to be 
imperfect (rather than completely infeasible), but there will remain 
a role for the repeated-game incentives studied here. 

Consider the following strategies in the infinitely repeated 
game, which involve the wage w* > w0 to be determined later. We 
will say that the history of play is high-wage, high-output if all pre
vious offers have been w*, all previous offers have been accepted, 
and all previous outputs have been high. The firm's strategy is 
to offer w = w* in the first period, and in each subsequent period 
to offer w = iv* provided that the history of play is high-wage, 
high-output, but to offer w = 0 otherwise. The worker's strategy 
is to accept the firm's offer if w > w0 (choosing self-employment 
otherwise) and to supply effort if the history of play, including the 
current offer, is high-wage, high-output (shirking otherwise). 
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The firm's strategy is analogous to the trigger strategies ana
lyzed in the previous two sections: play cooperatively provided 
that all previous play has been cooperative, but switch forever 
to the subgame-perfect outcome of the stage game should coop
eration ever break down. The worker's strategy is also analo
gous to these trigger strategies, but is slightly subtler because the 
worker moves second in the sequential-move stage game. In a 
repeated game based on a simultaneous-move stage game, devi
ations are detected only at the end of a stage; when the stage 
game is sequential-move, however, a deviation by the first mover 
is detected (and should be responded to) during a stage. The 
worker's strategy is to play cooperatively provided all previous 
play has been »ooperative, but to respond optimally to a devia
tion by the firm, knowing that the subgame-perfect outcome of 
the stage game will be played in all future stages. In particular, if 
w ^ w* but w > wo, then the worker accepts the firm's offer but 
shirks. 

We now derive conditions under which these strategies are a 
subgame-perfect Nash equilibrium. As in the previous two sec
tions, the argument consists of two parts: (i) deriving conditions 
under which the strategies are a Nash equilibrium, and (ii) show
ing that they are subgame-perfect. 

Suppose the firm offers w* in the first period. Given the firm's 
strategy, it is optimal for the worker to accept. If the worker 
supplies effort, then the worker is sure to produce high output, 
so the firm will again offer w* and the worker will face the same 
effort-supply decision next period. Thus, if it is optimal for the 
worker to supply effort, then the present value of the worker's 
payoffs is 

Ve = (w*-e) + 6Ve, 
or V, = (w* - e)/(l - 6). If the worker shirks, however, then 
the worker will produce high output with probability p, in which 
case the same effort-supply decision will arise next period, but the 
worker will produce low output with probability 1 - p, in which 
case the firm will offer w = 0 forever after, so the worker will be 
self-employed forever after. Thus, if it is optimal for the worker to 
shirk, then the (expected) present value of the worker's payoffs is 
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or Vs = [(1 - 6)zv* + 6{1 - p)wQ)/{\ - d » ( l - 6). It is optimal for 
the worker to supply effort if Ve > Vs, or 

1 -p«5 / 1-6 \ 
w * w ° + W~P)e = w° +1 1 + W=7)Je- {235) 

Thus, to induce effort, the firm must pay not only U'o+e to compen
sate the worker for the foregone opportunity of self-employment 
and for the disutility of effort, but also the wage premium (1 -
6)e/6(\ - p). Naturally, if p is near one (i.e., if shirking is rarely 
detected) then the wage premium must be extremely high to in
duce effort. If p = 0, on the other hand, then it is optimal for the 
worker to supply effort if 

—!— (w* -e)> zv* + -wo, (2.3.6) 
l—o l—o 

analogous to (2.3.1) and (2.3.2) from the perfect-monitoring anal
yses in the previous two sections, (2.3.6) is equivalent to 

w* >w0+ ( l + —— J c. 

which is indeed (2.3.5) with p = 0. 
Even if (2.3.5) holds, so that the worker's strategy is a best re

sponse to the firm's strategy, it must also be worth the firm's while 
to pay w". Given the worker's strategy, the firm's problem in the 
first period amounts to choosing between: (1) paying w = w*, 
thereby inducing effort by threatening to fire the worker if low 
output is ever observed, and so receiving the payoff y—w* each pe
riod; and (2) paying w = 0, thereby inducing the worker to choose 
self-employment, and so receiving the payoff zero in each period. 
Thus, the firm's strategy is a best response to the worker ' s if 

y - w* > 0. (2.3.7) 

Recall that we assumed that y - e > WQ (i.e., that it is efficient for 
the worker to be employed by the firm and to supply effort). We 
require more if these strategies are to be a subgame-perfect Nash 
equilibrium: (2.3.5) and (2.3.7) imply 

y-e>w0 + -±f±f)e, 
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which can be interpreted as the familiar restriction that 6 must be 
sufficiently large if cooperation is to be sustained. 

We have so far shown that if (2.3.5) and (2.3.7) hold, then the 
specified strategies are a Nash equilibrium. To show that these 

itegies are subgame-perfect, we first define the subgames of the 
repeated game. Recall that when the stage game has simultaneous 
moves, the subgames of the repeated game begin between the 
stages of the repeated game. For the sequential-move stage game 
considered here, the subgames begin not only between stages but 
also within each stage—after the worker observes the firm's wage 
offer. Given the players ' strategies, we can group the subgames 
into two classes: those beginning after a high-wage, high-output 
history, and those beginning after all other histories. We have 
already shown that the players' strategies are a Nash equilibrium 
given a history of the former kind. It remains to do so given 
a history of the latter kind: since the worker will never supply 
effort, it is optimal for the firm to induce the worker to choose 
self-employment; since the firm will offer w ~ 0 in the next stage 
and forever after, the worker should not supply effort in this stage 
and should accept the current offer only if w > WQ. 

In this equilibrium, self-employment is permanent: if the 
worker is ever caught shirking, then the firm offers w = 0 for
ever after; if the firm ever deviates from offering w = w*, then 
the worker will never supply effort again, so the firm cannot af
ford to employ the worker. There are several reasons to question 
whether it is reasonable for self-employment to be permanent. In 
our single-firm, single-worker model, both players would prefer to 
return to the high-wage, high-output equilibrium of the infinitely 
repeated game rather than play the subgame-perfect outcome of 
the stage game forever. This is the issue of renegotiation intro
duced in Section 2.3.A. Recall that if the players know that pun
ishments will not be enforced, then cooperation induced by the 
threat of such punishments is no longer an equilibrium. 

In the labor-market context, the firm may prefer not to rene
gotiate if it employs many workers, since renegotiating with one 
worker may upset the high-wage, high-output equilibrium still be
ing played (or yet to begin) with other workers. If there are many 
firms, the question becomes whether firm ;' will hire workers for
merly employed by firm i. It may be that firm ;' will not, because 
it fears upsetting the high-wage, high-output equilibrium with its 
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current workers, just as in the single-firm case. Something like 
this may explain the lack of mobility of prime-age, white-collar 
male workers among large firms in Japan. 

Alternatively, if fired workers can always find new jobs that 
they prefer to self-employment, then it is the wage in those new 
jobs (net of any disutility of effort) that plays the role of the self-
employment wage u»o here. In the extreme case in which a fired 
worker suffers no loss at all, there are no punishments for shirking 
available in the infinitely repeated game, and hence no subgame-
perfect Nash equilibrium in which the worker supplies effort. Sec 
Bulow and Rogoff (1989) for an elegant application of similar ideas 
in the context of sovereign debt: if an indebted country can repli 
cate the long-term loans it receives from creditor countries by 
making short-term cash-in-advance transactions in international 
capital markets, then there are no punishments for default avail
able in the infinitely repeated game between debtor and creditor 
countries. 

2.3.E Time-Consistent Monetary Policy 

Consider a sequential-move game in which employers and work
ers negotiate nominal wages, after which the monetary authority 
chooses the money supply, which in turn determines the rate of in
flation. If wage contracts cannot be perfectly indexed, employers 
and workers will try to anticipate inflation in setting the wage. 
Once an imperfectly indexed nominal wage has been set, how
ever, actual inflation above the anticipated level of inflation will 
erode the real wage, causing employers to expand employment 
and output. The monetary authority therefore faces a trade-off 
between the costs of inflation and the benefits of reduced unem
ployment and increased output that follow from surprise inflation 
(i.e., inflation above the anticipated level). 

As in Barro and Gordon (1983), we analyze a reduced-form 
version of this model in the following stage game. First, em
ployers form an expectation of inflation, -n". Second, the monetary 
authority observes this expectation and chooses actual inflation, ~. 
The payoff to employers is ~(n - TT*)2. That is, employers simply 
want to anticipate inflation correctly; they achieve their maximum 
payoff (namely, zero) when -n = if. The monetary authority, for 
its part, would like inflation to be zero but output (y) to be at its 
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efficient level (y*). We write the payoff to the monetary authority 

35 U(ir.y) err2 (y y')\ 

where the parameter c > 0 reflects the monetary authority's trade
off between its two goals. Suppose that actual output is the fol-

ig function of target output and surprise inflation: 

y = by*+d(n-*e), 

where b < 1 reflects the presence of monopoly power in product 
markets (so that if there is no surprise inflation then actual out
put will be smaller than would be efficient) and d > 0 measures 
the effect of surprise inflation on output through real wages, as 
described in the previous paragraph. We can then rewrite the 
monetary authority's payoff as 

W(7r,7rc) = -C7T2 - \(b - l)y* +d(n - TT<)]2. 

To solve for the subgame-perfect outcome of this stage game, 
we first compute the monetary authority's optimal choice of n 
given employers' expectation ire. Maximizing W(-K,ire) yields 

Since employers anticipate that the monetary authority will choose 
j , employers choose 7r* to maximize -[ir'trf) - ir1]2, which 

yields 7r#(7r*) = it*, or 

.•-fflfV-... 
where the subscript s denotes "stage game." Equivalently, one 
could say that the rational expectation for employers to hold is 
the one that will subsequently be confirmed by the monetary au
thority, hence ir'iir*) = TT*, and thus if = 7rs. When employers 
Ad the expectation -nf = 7rS/ the marginal cost to the monetary 

•m setting 7r slightly above irs exactly balances the 
marginal benefit from surprise inflation. In this subgame-perfect 

the monetary authority is expected to inflate and does 
't would be better off if it could commit to having no infla-
'ndeed, if employers have rational expectations (i.e, n - rf), 
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then zero inflation maximizes the monetary authority's payoff (i.e. 
V*2 when ~ = if, so - = 0 is optimal). ' 

Now consider the infinitely repeated game in which both play
ers share the discount factor S. We will derive conditions under 
which w = ** = 0 in every period in a subgame-perfect Nash 
equilibrium involving the following strategies. In the first period, 
employers hold the expectation if = 0. In subsequent periods 
they hold the expectation if = 0 provided that all prior expecta
tions have been if = 0 and all prior actual inflations have been 
- = 0; otherwise, employers hold the expectation if = -ns—the 
rational expectation from the stage game. Similarly, the mone
tary authority sets - = 0 provided that the current expectation is 
if = 0, all prior expectations have been if = 0, and all prior actual 
inflations have been - = 0; otherwise, the monetary authority sets 
7r = it'{if)—its best response to the employers' expectation, as 
given by (2.3.8). 

Suppose employers hold the expectation if = 0 in the first pe
riod. Given the employers' strategy (i.e., the way employers up
date their expectation after observing actual inflation), the mon
etary authority can restrict attention to two choices: (1) IT = 0, 
which wul lead to if = 0 next period, and hence to the same de
cision for the monetary authority next period; and (2) n = 7r*(0) 
from (2.3.8), which will lead to if = ns forever after, in which 
case the monetary authority will find it optimal to choose IT = ns 

forever after. Setting ir — 0 this period thus results in the payoff 
W(0,0) each period, while setting ix = n*(0) this period results in 
the payoff W(7r*(0),0) this period, but the payoff W(ns, irs) forever 
after. Thus, the monetary authority's strategy is a best response 
to the employers' updating rule if 

j - ^ W ( 0 , 0 ) > IV(ff*(0),0) + r ^ W ( 7 r s , 7 r s ) , (2.3.9) 

which is analogous to (2.3.6). 
Simplifying (2.3.9) yields 6 > c/(2c + d1). Each of the pa

rameters c and d has two effects. An increase in d, for example, 
makes surprise inflation more effective in increasing output, and 
so makes it more tempting for the monetary authority to indulge in 
surprise inflation, but for the same reason an increase in d also in
creases the stage-game outcome 7rs, which makes the punishment 
more painful for the monetary authority. Likewise, an increase 
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in c makes inflation more painful, which makes surprise inflation 
empting but also decreases ns. In both cases, the latter effect 

outweighs the former, so the critical value of the discount factor 
necessary to support this equilibrium, c/(2c + d2), decreases in d 
and increases in c. 

We have so far shown that the monetary authority's strategy is 
a best response to the employers' strategy if (2.3.9) holds. To show 
that these strategies are a Nash equilibrium, it remains to show 
that the latter is a best response to the former, which follows from 
the observation that the employers obtain their best possible pay
off (namely, zero) in every period. Showing that these strategies 
are subgame-perfect follows from arguments analogous to those 
in the previous section. 

2.4 Dynamic Games of Complete but 
Imperfect Information 

2.4.A Extensive-Form Represen ta t ion of Games 

In Chapter 1 we analyzed static games by representing such games 
in normal form. We now analyze dynamic games by representing 
such games in extensive form.18 This expositional approach may 
make it seem that static games must be represented in normal 
form and dynamic games in extensive form, but this is not the 
case. Any game can be represented in either normal or extensive 
form, although for some games one of the two forms is more 
convenient to analyze. We will discuss how static games can be 
represented using the extensive form and how dynamic games can 
be represented using the normal form. 

Recall from Section 1.1.A that the normal-form representation 
of a game specifies: (1) the players in the game, (2) the strategies 
available to each player, and (3) the payoff received by each player 
for each combination of strategies that could be chosen by the 
players. 

Definition The extensive-form representation of a game specifies: 
(V the players in the game, (2a) when each player has the move, (2b) what 

18We give an informal description of the extensive form. For a precise treat
ment, see Kreps and Wilson (1982). 
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each player can do at each c 
each player knows at each of his or her opportunities to move, ami 
pvyoftreceived by each player for each combination of moves that could be 
chosen by the play, 

Althc o at the time, we analyzed several games 
represented a form in Sections 2.1 through 2.3. The 
contribution of this section is to describe such games using game 
trees rather than « cause the former are often simpler both 

i to ana 
one in extensive form consider the fol-

g member of the class oi two-stage games of complete and 
perfect information introduced in Section 2.1. A: 

1. Plaver 1 chooses an action <*i from the feasible set .4] = 

2. P observes J\ and then chooses an action 02 from the 
>-

rrs are U\(ai.u2 and > . as shown in the game 
tree in figure 2.4.1. 

:f to Player 1: 3 
Pavoff toPla; 

Figure 2.4.1. 
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e tree begins with a decision node for player I, where 1 
etween L and R. If plaver 1 chooses L, then a decision 
player 2 is reached, where 2 chooses between V and R'. 
if player 1 chooses R, then another decision node for 

is reached, where 2 chooses between V and R'. Following 
2 s choices, a terminal node is reached (i.e., the game 

d the indicated payoffs are received. 
htfonvard to extend the game tree in Figure 2.4.1 to 

-ent any dynamic game of complete and perfect information 
—that is, any game in which the players move in sequence, all 

are common knowledge before the next move is 
chosen, and the players' payoffs from each feasible combination 

are common knowledge. (Continuous action spaces, as 
in the Stackelberg model, or an infinite horizon, as in the Rubin-

model, present graphical but not conceptual difficulties.) We 
derive the normal-form representation of the dynamic game 

1.1. We then conclude this section by showing that 
static games can be given extensive-form representations, and by 
describing how to construct extensive-form representations of dy
namic games with complete but imperfect information. 

the numbering conventions in the definitions of the normal 
sive forms suggest, there is a close connection between 

s feasible strategies (item 2) given in the normal form 
and the description of when a player moves, what he or she can 

• hat he or she knows (items 2a, 2b, and 2c) in the ex-
e form. To represent a dynamic game in normal form, we 

need to translate the information in the extensive form into the 
description of each player 's strategy space in the normal form. 

this, recall the definition of a strategy given (informally) in 
Section 2.3.B: 

Definition .A stra tegy for a player is a complete plan of action—it spec-
i for the player in every contingency in which the player 

night be called on to act. 

1* may seem unnecessary to require a player's strategy to specify a 
ie action for every contingency in which the player might be 

called upon to move. It will become dear, however, that we could 
not apply the notion of Nash equilibrium to dynamic games of 
complete information if we allowed a player's strategy to leave the 
actions in some contingencies unspecified. For player; to compute 
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a best response to player i's strategy,;' may need to consider how 
/ would act in every contingency, not just in the contingencies i or 
/ thinks likely to arise. 

In the game in Figure 2.4.1, player 2 has two actions but four 
strategies, because there are two different contingencies (namely 
after observing L by player 1 and after observing R by player 1) 
in which player 2 could be called upon to act. 

Strategy 1: If player 1 plays L then play V', if player 1 plays 
R then play L', denoted by (I/, V). 

Strategy 2: If player 1 plays L then play V, if player 1 plays 
R then play R', denoted by (Z/,R')-

Strategy 3: If player 1 plays L then play R', if player 1 plays 
R then play V, denoted by (R\ V). 

Strategy 4: If player 1 plays L then play R', if player 1 plays 
R then play R', denoted by (R',R'). 

Player 1, however, has two actions but only two strategies: play 
L and play R. The reason player 1 has only two strategies is that 
there is only one contingency in which player 1 might be called 
upon to act (namely, the first move of the game, when player 1 
will certainly be called upon to act), so player l ' s strategy space 
is equivalent to the action space A\ = {L,R}. 

Given these strategy spaces for the two players, it is straightfor
ward to derive the normal-form representation of the game from 
its extensive-form representation. Label the rows of the normal 
form with player l's feasible strategies, label the columns with 
player 2's feasible strategies, and compute the payoffs to the play
ers for each possible combination of strategies, as shown in Fig
ure 2.4.2. 

Having now demonstrated that a dynamic game can be rep
resented in normal form, we turn next to showing how a static 
(i.e., simultaneous-move) game can be represented in extensive 
form. To do so, we rely on the observation made in Section 1.1-A 
(in connection with the Prisoners' Dilemma) that the players need 
not act simultaneously: it suffices that each choose a strategy with
out knowledge of the other's choice, as would be the case in the 
Prisoners' Dilemma if the prisoners reached decisions at arbitrary 
times while in separate cells. Thus, we can represent a (so-calle 
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Player 1 
L 

R 

(L',1/) 

3,1 

2,1 

Player 2 

(L',R') (R',U) 

3,1 

0,0 

Figure 2.4.2. 

1,2 

2,1 

(K',K') 

1,2 

0,0 

simultaneous-move game between players 1 and 2 as follows. 

1. Player 1 chooses an action a\ from the feasible set A\. 

2. Player 2 does not observe player l 's move but chooses an 
action ai from the feasible set Ai. 

3. Payoffs are «i(fli,fl2) and M f li, f l2)-

Alternatively, player 2 could move first and player 1 could then 
move without observing 2's action. Recall that in Section 2.1.B 
we showed that a quantity-choice game with this timing and in
formation structure differs importantly from the Stackelberg game 
with the same timing but an information structure in which firm 2 
observes firm l ' s move, and we argued that this sequential-move, 
unobserved-action game has the same Nash equilibrium as the 
simultaneous-move Cournot game. 

To represent this kind of ignorance of previous moves in an 
extensive-form game, we introduce the notion of a player's infor-
nation set. 

ennition A information set for a player is a collection of decision 
IUH'cs satisfying: 

) the player has the move at every node in the information set, and 

uhen the play of the game reaches a node in the information set, the 
player with the move does not know which node in the information 
set has (or has not) been reached. 

Si) of this definition implies that the player must have the 
m e se* of feasible actions at each decision node in an information 
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Prisoner 1 

M u m / \ F i n k 

Prisoner 2 / \ . Prisoner 2 

Mum / \ Fink Mum / \ Fink 

4 0 5 1 
4 5 0 1 

Figure 2.4.3. 

set, else the player would be able to infer from the set of actions 
available that some node(s) had or had not been reached. 

In an extensive-form game, we will indicate that a collection 
of decision nodes constitutes an information set by connecting the 
nodes by a dotted line, as in the extensive-form representation of 
the Prisoners' Dilemma given in Figure 2.4.3. We will sometimes 
indicate which player has the move at the nodes in an information 
set by labeling each node in the information set, as in Figure 2.4.3; 
alternatively, we may simply label the dotted line connecting these 
nodes, as in Figure 2.4.4. The interpretation of Prisoner 2's infor
mation set in Figure 2.4.3 is that when Prisoner 2 gets the move, 
all he knows is that the information set has been reached (i.e., that 
Prisoner 1 has moved), not which node has been reached (i.e., 
what she did). We will see in Chapter 4 that Prisoner 2 may have 
a conjecture or belief about what Prisoner 1 did, even if he did 
not observe what she did, but we will ignore this issue until then. 

As a second example of the use of an information set in rep
resenting ignorance of previous play, consider the following 
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Figure 2.4.4. 

dynamic game of complete but imperfect information: 

1. Player 1 chooses an action a\ from the feasible set A\ = 

2. Player 2 observes a\ and then chooses an action a2 from the 
feasible set A2 = {L\R'}. 

3. Player 3 observes whether or not (a-[,a2) ~ {R,R') and then 
chooses an action ao, from the feasible set A3 = {L",R"}. 

The extensive-form representation of this game (with payoffs ig
nored for simplicity) is given in Figure 2.4.4. In this extensive 
form, player 3 has two information sets: a singleton information 
set following R by player 1 and R' by player 2, and a nonsin-
gleton information set that includes every other node at which 
player 3 has the move. Thus, all player 3 observes is whether or 
^{aua2) = (R,R'). 

Now that we have defined the notion of an information set, 
we can offer an alternative definition of the distinction between 
perfect and imperfect information. We previously defined perfect 
information to mean that at each move in the game the player 
;v'th the move knows the full history of the play of the game thus 
ar. An equivalent definition of perfect information is that every 
formation set is a singleton; imperfect information, in contrast, 

file:///Fink
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means that there is at least one nonsingleton information set.19 

Thus, the extensive-form representation of a simultaneous-move 
game (such as the Prisoners' Dilemma) is a game of imperfect in
formation. Similarly, the two-stage games studied in Section 2.2.A 
have imperfect information because the actions of players 1 and 2 
are simultaneous, as are the actions of players 3 and 4. More gen
erally, a dynamic game of complete but imperfect information can 
be represented in extensive form by using nonsingleton informa
tion sets to indicate what each player knows (and does not know) 
when he or she has the move, as was done in Figure 2.4.4. 

2.4.B Subgame-Perfect Nash Equilibrium 

In Section 2.3.B we gave the general definition of subgame-perfect 
Nash equilibrium. We applied the definition only to repeated 
games, however, because we defined a strategy and a subgame 
only for repeated games. In Section 2.4.A we gave the general 
definition of a strategy. We now give the general definition of a 
subgame, after which we will be able to apply the definition of a 
subgame-perfect Nash equilibrium to general dynamic games of 
complete information. 

Recall that in Section 2.3.B we informally defined a subgame 
as the piece of a game that remains to be played beginning at 
any point at which the complete history of the game thus far is 
common knowledge among the players, and we gave a formal 
definition for the repeated games we considered there. We now 
give a formal definition for a general dynamic game of complete 
information, in terms of the game's extensive-form representation. 

Definition A subgame in an extensive-form game 

(a) begins at a decision node n that is a singleton information set (but 
is not the game's first decision node), 

(b) includes all the decision and terminal nodes following n in the game 
tree (but no nodes that do not follow n), and 

19This characterization of perfect and imperfect information in terms of single
ton and nonsingleton information sets is restricted to games of complete infor
mation because, as we will see in Chapter 4, the extensive-form representation of 
a game with perfect but incomplete information has a nonsingleton information 
set. In this chapter, however, we restrict attention to complete information. 
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(c) does not cut any information sets (i.e., if a decision node n' follows n 
in the game tree, then all other nodes in the information set contain
ing n' must also follow n, and so must be included in the subgame). 

Because of the parenthetical remark in part (a), we do not count the 
whole game as a subgame, but this is only a matter of style: drop
ping that parenthetical remark from the definition would have no 
effect in what follows. 

We can use the game in Figure 2.4.1 and the Prisoners' Dilemma 
in Figure 2.4.3 to illustrate parts (a) and (b) of this definition. 
In Figure 2.4.1 there are two subgames, one beginning at each 
of player 2's decision nodes. In the Prisoners' Dilemma (or any 
other simultaneous-move game) there are no subgames. To illus
trate part (c) of the definition, consider the game in Figure 2.4.4. 
There is only one subgame; it begins at player 3's decision node 
following R .by player 1 and R' by player 2. Because of part (c), 
a subgame does not begin at either of player 2's decision nodes 
in this game, even though both of these nodes are singleton infor
mation sets. 

One way to motivate part (c) is to say that we want to be able 
to analyze a subgame on its own, and we want the analysis to be 
relevant to the original game. In Figure 2.4.4, if we attempted to 
define a subgame beginning at player 2's decision node following 
L by player 1, then we would be creating a subgame in which 
player 3 is ignorant about player 2's move but knows player l's 
move. Such a subgame would not be relevant to the original game 
because in the latter player 3 does not know player l's move but 
instead observes only whether or not (fli,fl2) = {&,&')• Recall the 
related argument for why the tth stage game in a repeated game 
taken on its own is not a subgame of the repeated game, assuming 
t < T in the finite case. 

Another way to motivate part (c) is to note that part (a) guar
antees only that the player with the move at node n knows the 
complete history of the game thus far, not that the other players 
also know this history. Part (c) guarantees that the complete his
tory of the game thus far is to be common knowledge among all 
the players, in the following sense: at any node that follows n, say 
n', the player with the move at n' knows that the play of the game 
reached node n. Thus, even if n' belongs to a nonsingleton infor
mation set, all the nodes in that information set follow n, so the 
player with the move at that information set knows that the game 
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has reached a node that follows n. (If the last two statements seem 
awkward, it is in part because the extensive-form representation 
of a game specifies what player i knows at each of i's decision 
nodes but does not explicitly specify what / knows at ;'s decision 
nodes.) As described earlier, Figure 2.4.4 offers an example of how 
part (c) could be violated. We can now reinterpret this example: 
if we (informally) characterized what player 3 knows at player 2's 
decision node following L by player 1, we would say that 3 does 
not know the history of the game thus far, because 3 has subse
quent decision nodes at which 3 does not know whether 1 played 
LOTR. 

Given the general definition of a subgame, we can now ap
ply the definition of subgame-perfect Nash equilibrium from Sec
tion 2.3.B. 

Definition (Selten 1965): A Nash equilibrium is subgame-perfect if 
the players' strategics constitute a Nash equilibrium in every subgame. 

It is straightforward to show that any finite dynamic game of 
complete information (i.e., any dynamic game in which each of a 
finite number of players has a finite set of feasible strategies) has 
a subgame-perfect Nash equilibrium, perhaps in mixed strategies. 
The argument is by construction, involving a procedure in the 
spirit of backwards induction, and is based on two observations. 
First, although we presented Nash's Theorem in the context of 
static games of complete information, it applies to all finite normal-
form games of complete information, and we have seen that such 
games can be static or dynamic. Second, a finite dynamic game 
of complete information has a finite number of subgames, each of 
which satisfies the hypotheses of Nash's Theorem.2" 

20To construct a subgame-perfect Nash equilibrium, first identify all the small
est subgames that contain terminal nodes in the original game tree (where a 
subgame is a smallest subgame if it does not contain any other subgames). Then 
replace each such subgame with the payoffs from one of its Nash equilibria. 
Now think of the initial nodes in these subgames as the terminal nodes in a 
truncated version of the original game. Identify all the smallest subgames in 
this truncated game that contain such terminal nodes, and replace each of these 
subgames with the payoffs from one of its Nash equilibria. Working backwards 
through the tree in this way yields a subgame-perfect Nash equilibrium because 

•legies constitute a Nash equilibrium (in fact, a subgame-perfect 
Nash equilibrium) in every subgame. 
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We have already encountered two ideas that are intimately re
lated to subgame-perfect Nash equilibrium: the backwards-induc-
tion outcome defined in Section 2.1.A, and the subgame-perfect 
outcome defined in Section 2.2.A. Put informally, the difference is 
that an equilibrium is a collection of strategies (and a strategy is a 
complete plan of action), whereas an outcome describes what will 
happen only in the contingencies that are expected to arise, not 
in every contingency that might arise. To be more precise about 
the difference between an equilibrium and an outcome, and to il
lustrate the notion of subgame-perfect Nash equilibrium, we now 
reconsider the games defined in Sections 2.1.A and 2.2.A. 

Definition In the two-stage game of complete and perfect information de
fined in Section 2.1.A, the backwards-induction outcome is 

[2{a\)) but the subgame-perfect Nash equilibrium is {a\,R2(a-[)). 

In this game, the action a\ is a strategy for player 1 because 
there is only one contingency in which player 1 can be called 
upon to act—the beginning of the game. For player 2, however, 
R2{a\) ' s a n action (namely, 2's best response to a*) but not a 
strategy, because a strategy for player 2 must specify the action 
2 will take following each of l's possible first-stage actions. The 
best-response function R2{a\), on the other hand, is a strategy for 
player 2. In this game, the subgames begin with (and consist solely 
of) player 2's move in the second stage. There is one subgame 
for each of player l's feasible actions, a\ in A\. To show that 
(a*vRi{ci\)) is a subgame-perfect Nash equilibrium, we therefore 
must show that (a*{,R2(ai)) is a Nash equilibrium and that the 
players' strategies constitute a Nash equilibrium in each of these 
subgames. Since the subgames are simply single-person decision 
problems, the latter reduces to requiring that player 2's action be 
optimal in every subgame, which is exactly the problem that the 
best-response function R2(

fli) solves. Finally, {a\,R2{a\)) is a Nash 
equilibrium because the players' strategies are best responses to 
each other: a^ is a best response to K2(«i)~that is, a\ maximizes 
u\{a\,Ri{a\))i and R2(«i) is a best response to a\~that is, R2{a\) 
maximizes u2{a\,a2). 

The arguments are analogous for the games considered in Sec
tion 2.2.A, so we do not give as much detail. 

Definition In the two-stage game of complete but imperfect informa
tion defined in Section 2.2.A, the subgame-perfect outcome is {a'va;. 
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«3(«},«2)«fl4(fli»^)) but the subgame-perfect Nash equilibrium is 
(flj, flj, fl5(fli, fl2),«4(fll>fl2)) • 

In this game, the action pair (a^ (fli, fljl), aj («J, «£ ) ) i s t h e Nash equi
librium of a single subgame between players 3 and 4 (namely, the 
game that remains after players 1 and 2 choose {a^a^)), whereas 
(fl3(fli,a2),<*4(fli*fl2)) is a strategy for player 3 and a strategy for 
player 4—complete plans of action describing a response to every 
feasible pair of moves by players 1 and 2. In this game, the sub-
games consist of the second-stage interaction between players 3 
and 4, given the actions taken by players 1 and 2 in the first stage. 
As required for a subgame-perfect Nash equilibrium, the strategy 
pair (fl5(ai.fl2)-^4(^1^2)) specifies a Nash equilibrium in each of 
these subgames. 

We conclude this section (and this chapter) with an example 
that illustrates the main theme of the chapter: subgame-perfection 
eliminates Nash equilibria that rely on noncredible threats or prom
ises. Recall the extensive-form game in Figure 2.4.1. Had we en
countered this game in Section 2.1.A, we would have solved it 
by backwards induction, as follows. If player 2 reaches the de
cision node following L by player 1, then 2's best response is to 
play R' (which yields a payoff of 2) rather than to play V (which 
yields a payoff of 1). If 2 reaches the decision node following R by 
player 1, then 2's best response is to play V (which yields a pay
off of 1) rather than to play R' (which yields a payoff of 0). Since 
player 1 can solve player 2's problem as well as 2 can, l 's problem 
at the first stage amounts to choosing between L (which leads to 
a payoff of 1 for player 1, after player 2 plays R') and R (which 
leads to a payoff of 2 for player 1, after player 2 plays V). Thus, 
player l's best response to the anticipated behavior by player 2 is 
to play R in the first stage, so the backwards-induction outcome 
of the game is (R, V), as indicated by the bold path beginning at 
player l's decision node in Figure 2.4.5. There is an additional 
bold path emanating from player 2's decision node following L 
by player 1. This partial path through the game tree indicates 
that player 2 would have chosen R' if that decision node had been 
reached. 

Recall that the normal-form representation of this game was 
given in Figure 2.4.2. If we had encountered this normal-forrn 
game in Section 1.1.C, we would have solved for its (pure-strategy) 
Nash equilibria. They are (R,(R',L')) and (L,(R',R')). We can 
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Figure 2.4.5. 

now compare these Nash equilibria in the normal-form game in 
Figure 2.4.2 with the results of the backwards-induction procedure 
in the extensive-form game in Figure 2.4.5: the Nash equilibrium 
(R,(R',L')) in the normal-form representation corresponds to all 
the bold paths in Figure 2.4.5. In Section 2.1.A we called {R,V) 
the backwards-induction outcome of the game. It would be nat
ural to call {R,{R',L')) the backwards-induction Nash equilibrium 
of the game, but we will use more general terminology and call 
it the subgame-perfect Nash equilibrium. The difference between 
the outcome and the equilibrium is that the outcome specifies only 
the bold path beginning at the game's first decision node and con
cluding at a terminal node, whereas the equilibrium also specifies 
the additional bold path emanating from player 2's decision node 
following L by player 1. That is, the equilibrium specifies a com
plete strategy for player 2. 

But what about the other Nash equilibrium, {L,{R',R'))? In 
this equilibrium, player 2's strategy is to play R' not only if player 1 
chooses L (as was also the case in the first Nash equilibrium) but 
also if player 1 chooses R. Because R' (following R) leads to a pay
off of 0 for player 1, player l 's best response to this strategy by 
player 2 is to play L, thereby achieving a payoff of 1 for player 1 
(after player 2 chooses R% which is better than 0. Using loose but 
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evocative language, one might say that player 2 is threatening to 
play R' if player 1 plays R. (Strictly speaking, there is no oppor
tunity for 2 to make such a threat before 1 chooses an action. If 
there were, it would be included in the extensive form.) If this 
threat works (i.e., if 1 chooses to play L), then 2 is not given the 
opportunity to carry out the threat. The threat should not work, 
however, because it is not credible: if player 2 were given the op
portunity to carry it out (i.e., if player 1 played R), then player 2 
would decide to play V rather than R'. Put more formally, the 
Nash equilibrium (L, (R',R')) is not subgame-perfect, because the 
players' strategies do not constitute a Nash equilibrium in one of 
the subgames. In particular, player 2's choice of R' is not optimal 
in the subgame beginning at (and consisting solely of) player 2's 
decision node following R by player 1. 

In a game of complete and perfect information, backwards in
duction eliminates noncredible threats. Because every information 
set is a singleton, each decision node in the tree represents a con
tingency that could arise in which a player would be called upon 
to act. The process of working backwards through the extensive 
form, node by node, thus amounts to forcing each player to con
sider carrying out each threat the player might make. In a game of 
imperfect information, however, things are not so simple, because 
such a game involves at least one nonsingleton information set. 
One could try the same approach: work backwards through the 
extensive form and eventually reach a decision node that is con
tained in a nonsingleton information set. But forcing the player 
to consider what he or she would do if that decision node were 
reached is not equivalent to forcing the player to consider a con
tingency that could arise in which the player would be called on 
to act, because if that information set is reached by the play of 
the game then the player does not know whether or not that de
cision node has been reached, precisely because the decision node 
is contained in a nonsingleton information set. 

One way to handle the problem of nonsingleton information 
sets in backwards induction is to work backwards through the ex
tensive form until one encounters a nonsingleton information set, 
but skip over it and proceed up the tree until a singleton informa
tion set is found. Then consider not only what the player with the 
move at that singleton information set would do if that decision 
node were reached, but also what action would be taken by the 
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player with the move at each of the nonsingleton information sets 
that has been skipped. Roughly speaking, this procedure yields a 
subgame-perfect Nash equilibrium. A second way to handle the 
problem is to work backwards through the extensive form until 
one encounters a nonsingleton information set. Then force the 
player with the move at that information set to consider what he 
or she would do if that information set were reached. (Doing this 
requires that the player have a probability assessment concerning 
which node in the information set has been reached. Such an as
sessment will of course depend on the players' possible moves 
higher up the game tree, so one pass through the tree from the 
bottom up cannot yield a solution using this method.) Roughly 
speaking, this procedure yields a perfect Bayesian equilibrium; see 
Chapter 4. 

2.5 Further Reading 

Section 2.1: On wages and employment in unionized firms, see 
Espinosa and Rhee (1989; Problem 2.10) for a model of repeated 
negotiations, and Staiger (1991) for a model of a single negotia
tion in which the firm can choose whether to bargain over wages 
and employment or over only wages. On sequential bargaining, 
see Fernandez and Glazer (1991) for a Rubinstein-style model of 
bargaining between a firm and a union, with the new feature that 
the union must decide whether to go on strike after either it or the 
firm rejects an offer. There are multiple efficient subgame-perfect 
equilibria, which in turn support inefficient subgame-perfect equi
libria (i.e., equilibria involving strikes), even though there is com
plete information. Osborne and Rubinstein's (1990) book surveys 
many game-theoretic bargaining models, relates them to Nash's 
axiomatic approach to bargaining, and uses bargaining models as 
a foundation for the theory of markets. 

Section 2.2: On bank runs, see Jacklin and Bhattacharya (1988). 
McMillan's (1986) book surveys the early applications of game 
jheory to international economics; see Bulow and Rogoff (1989) 
or more recent work on sovereign debt. On tournaments, see 
Uzear (1989; Problem 2.8) for a model in which workers can both 
oS!SS e ^ e i r ° W n o u t P u t s anc* sabotage others', and see Rosen 

' o n t n e Prizes necessary to maintain incentives in a sequence 
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of tournaments in which losers in one round do not proceed to 
the next. 

Section 23: Benoit and Krishna (1985) analyze finitely repeated 
games. On renegotiation, see Benoit and Krishna (1989) for finitely 
repeated games and Farrell and Maskin (1989) for infinitely re
peated games and a review of the literature. Tirole (1988, Chap
ter 6) surveys dynamic oligopoly models. Akerlof and Yellen's 
(1986) book collects many of the important papers on efficiency 
wages and provides an integrative introduction. On monetary 
policy, see Ball (1990) for a summary of the stylized facts, a re
view of existing models, and a model that explains the time-path 
of inflation. 

Section 2.4: See Kreps and Wilson (1982) for a formal treatment 
of extensive-form games, and Kreps (1990, Chapter 11) for a more 
discursive account. 

2.6 Problems 

Section 2.1 

2.1. Suppose a parent and child play the following game, first 
analyzed by Becker (1974). First, the child takes an action, A, that 
produces income for the child, Ic(A), and income for the parent, 
Ip(A). (Think of IQ{A) as the child's income net of any costs of the 
action A.) Second, the parent observes the incomes IQ and Ip and 
then chooses a bequest, B, to leave to the child. The child's payoff 
is U(IC + B); the parent's is V{IP -B)+ kU{Ic + B), where k > 0 re
flects the parent's concern for the child's well-being. Assume that: 
the action is a nonnegative number, A > 0; the income functions 
Ic{A) and Ip{A) are strictly concave and are maximized at Ac > 0 
and Ap > 0, respectively; the bequest B can be positive or nega
tive; and the utility functions U and V are increasing and strictly 
concave. Prove the "Rotten Kid" Theorem: in the backwards-
induction outcome, the child chooses the action that maximizes 
the family's aggregate income, IC(A) + 1P{A), even though only 
the parent's payoff exhibits altruism. 

2.2. Now suppose the parent and child play a different game, 
first analyzed by Buchanan (1975). Let the incomes Ic anci ^ 
be fixed exogenously. First, the child decides how much of the 
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ncome Ic to save (S) for the future, consuming the rest (Ic - S) 
,v. Second, the parent observes the child's choice of S and 

chooses a bequest, B. The child's payoff is the sum of current 
and future utilities: Ui(Jc - S) + U2(S + B). The parent's payoff 
is V{lp ~ B) + k[U]{Ic - S) + U2{S + B)]. Assume that the utility 
lunctions U\, U2, and V are increasing and strictly concave. Show 
that there is a "Samaritan's Dilemma": in the backwards-induction 
outcome, the child saves too little, so as to induce the parent to 
leave a larger bequest (i.e., both the parent's and child's payoffs 
could be increased if S were suitably larger and B suitably smaller). 

Suppose the players in Rubinstein's infinite-horizon bargain
ing game have different discount factors: 61 for player 1 and 62 
for player 2. Adapt the argument in the text to show that in the 
backwards-induction outcome, player 1 offers the settlement 

1-fc W-61) 
.1 — 6\ 62' 1 — 1̂̂ 2 

to player 2, who accepts. 

2.4. Two partners would like to complete a project. Each partner 
receives the payoff V when the project is completed but neither 
receives any payoff before completion. The cost remaining before 
the project can be completed is R. Neither partner can commit to 
making a future contribution towards completing the project, so 
they decide to play the following two-period game: In period one 
partner 1 chooses to contribute C\ towards completion. If this con
tribution is sufficient to complete the project then the game ends 
and each partner receives V. If this contribution is not sufficient 
t o complete the project (i.e., C\ < R) then in period two partner 2 
chooses to contribute c2 towards completion. If the (undiscounted) 
s um of the two contributions is sufficient to complete the project 
then the game ends and each partner receives V. If this sum is 

1 sufficient to complete the project then the game ends and both 
Partners receive zero. 

Each partner must generate the funds for a contribution by 
^ g money away from other profitable activities. The optimal 
V to do this is to take money away from the least profitable al-

-rnatives first. The resulting (opportunity) cost of a contribution 
thus convex in the size of the contribution. Suppose that the 
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I ol a contribution c is c2 for each partner. Assume that part
ner 1 discounts second-period benefits by the discount factor b. 
Compuii the unique backwards-induction outcome of this two-
period contribution gam< foi each triple of parameters {V,R,k\; 
see Admati and Perry (1991) for the infinite-horizon case. 

2.5. Suppose a firm wants a worker to invest in a firm-specific 
I ill, ' , lull the skill is loo nebulous for a court to verify whether 

the worker has acquired it. (For example, the firm might ask the 
worker to "familiari/<' yourself with how we do things around 
here," or "bet ome an expert on this new market we might enter.") 
Ilif firm therefore cannoi contract to repay the worker ' s cost of 
invi yen il the worker invests, the firm can claim that the 
worker did not invest, and the court cannot tell whose claim is 
true. Likewise, the worker cannot contract to invest if paid in 
advance. 

II may be that the firm can use the (credible) promise of a 
promotion as an incentive for the worker to invest, as follows. 
Suppose that there are two jobs in the firm, one easy (£) and the 
other diffii ull (D), and thai the skill is valuable on both jobs but 
more so on the difficult job: I//»I \/i Q • \)\ •, < yus> where y,y is the 
worker's output in job / (= £ or D) when the worker 's skill level 
r /( i) Hi ',). Assume that the firm can commit to paying different 

ges in the two jobs, u>n and WQ, but that neither wage can be less 
than the worker's alternative wage, which we normalize to zero. 

The timing of the game is as follows: At date 0 the firm chooses 
and ili' worker observes these wages. At date 1 the 

i joins the firm and can acquire the skill S at cost C. (We 
ignoi. produi lion and wages during this first period. Since the 

lii noi ye\ iMjuired the skill, the efficient assignment is 
to job I m i ' that yDS - \jm > C, so that it is efficient for 
II" worker to At date 2 the firm observes whether the 
worker has acquired the -kill and then decides whether to promote 
Hi'' worker to job D for the worker's second (and last) period of 
employment. 

The firm's second period profit is i//;- - w\ when the worker is 
in job i and has skill level / I he worker's payoff from being in 
job ' in Hi'' second period is <<>, 01 W{ C, depending on whether 
the workei invested In the first period. Solve for the backwards-
indui Hon outi ome See Prendergasl (1992) for a richer model. 
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Section 2.2 

2.6. I hree oligopolists operate in a market with inverse demand 
n by I'll i) = a - Q, where Q = <?i + <fc + fa and qx is the 

produced by firm i. Each firm has a constant marginal 
oj production, c, and no fixed cost. The firms choose their 

follows; (1) firm 1 chooses c\\ > 0; (2) firms 2 and 3 
ij] and then simultaneously choose c/2 and q-}, respectively. 

is the subgame-perfect outcome? 

2.7. Suppose a union is the sole supplier of labor to all the firms 
in an oligopoly, such as the United Auto Workers is to General 

Ford, Chrysler, and so on. Let the timing of moves be 
1. lo the model in Section 2.1.C: (1) the union makes a 

'age demand, w, that applies to all the firms; (2) the firms 
(and accept) w and then simultaneously choose employ

ment levels, Lj for firm /; (3) payoffs are (w wa)L for the union, 
the wage that union members can earn in alternative 

employment and L = LH \-Ln is total employment in the union-
ins, and profit n(w,Lj) for firm /', where the determinants 

oi firm i'a profit are described next. 

All firms have the following production function: output equals 
or; c\i — Lj. The market-clearing price is P(Q) = a - Q when 

the aggregate quantity on the market is Q = c\\ + —Yqn- To keep 
ample, suppose that firms have no costs other than wages. 

What is the subgame-perfect outcome of this game? How (and 
/) does the number of firms affect the union's utility in the 

perfect outcome? 

2.8. Modify the tournament model in Section 2.2.D so that 
/'s output is y, = a - (l/2)Sj + e\, where Sj > 0 represents 

;e by worker ;', and worker i'a disutility of (productive and 
) <•ifort is g(et) 4-g(s,), as in Lazear (1989). Show that the 

optimal prize WII wL is smaller than when there is no possibility 
age (as in the text). 

2.9. ( (insider two countries. At date 1, the countries both have 
ii high tariffs that there is no trade. Within each country, wages 

and employment are determined as in the monopoly-union model 
in 'KM lion 2.1 ,C. At date 2, all tariffs disappear. Now each union 

the wage in its country but each firm produces for both mar-
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Assume that in each country inverse demand is P(Q) = a - Q, 
where Q is the aggregate quantity on the market in that country. 
Let the production function for each firm be q = L, so that wages 
are the firm's only cost, and let the union's utility function be 

\)L, where WQ is the workers' alternative wage. 
Solve for the backwards-induction outcome at date 1. 

Now consider the following game at date 2. First, the two 
unions simultaneously choose wages, W\ and v>2- Then the firms 
observe the wages and choose production levels for the domestic 
and foreign markets, denoted by ft, and e, for the firm in country /. 
All of firm i's production occurs at home, so the total cost is iVi(hj-t 
c,). Solve for the subgame-perfect outcome. Show that wages, 
employment, and profit (and therefore also the union's utility and 
consumer surplus) all increase when the tariffs disappear. See 
Huizinga (1989) for other examples along these lines. 

Section 2.3 

2.10. The accompanying simultaneous-move game is played 
twice, with the outcome of the first stage observed before the sec
ond stage begins. There is no discounting. The variable x is greater 
than 4, so that s not an equilibrium payoff in the one-shot 
game. For what values of x is the following strategy (played by 
both players) a subgame-perfect Nash equihbrium? 

Play Qi in the first stage. If the first-stage outcome is 
(Qi> Qi), play Pj in the second stage. If the first-stage 
outcome is (y.Qi) where y # Qi, play R, in the second 
stage. If the first-stage outcome is (Qi,z) where z i=- Qi, 
play S, in the second stage. If the first-stage outcome 
is (y,z) where y ^ Q\ and z ^ Q2, play P, in the second 
stage. 

Pi Qi R2 S2 

Pi 

Qi 

* i 

Si 

2, 2 

0. x 

0. 0 

0.-1 

x. 0 

4, 4 

0, 0 

0.-1 

- 1 . 0 

- 1 . 0 

0. 2 

- 1 , - 1 

0,0 

0.0 

0.0 

2.0 
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2 n . The simultaneous-move game (below) is played twice, with 
the outcome of the first stage observed before the second stage be
gins. There is no discounting. Can the payoff (4,4) be achieved 
in the first stage in a pure-strategy subgame-perfect Nash equilib
rium? If so, give strategies that do so. If not, prove why not. 

L C R 

3,1 

2,1 

1,2 

0,0 

1,2 

0,1 

5,0 

3,1 

4,4 

2.12. What is a strategy in a repeated game? What is a subgame 
in a repeated game? What is a subgame-perfect Nash equilibrium? 

2.13. Recall the static Bertrand duopoly model (with homoge
neous products) from Problem 1.7: the firms name prices simul
taneously; demand for firm i's product is a - p, if px < p- is 0 
if p, > pj, and is {a - p,-)/2 if pi = pp marginal costs are c < a. 
Consider the infinitely repeated game based on this stage game. 
Show that the firms can use trigger strategies (that switch forever 
to the stage-game Nash equilibrium after any deviation) to sustain 
the monopoly price level in a subgame-perfect Nash equilibrium 
if and only if 6 > 1/2. 

214. Suppose that demand fluctuates randomly in the infinitely 
repeated Bertrand game described in Problem 2.13: in each period, 
the demand intercept is an with probability TT and ai (< «H) with 
probability 1 - 7r; demands in different periods are independent. 
Suppose that each period the level of demand is revealed to both 
firms before they choose their prices for that period. What are the 
monopoly price levels (pu and pL) for the two levels of demand? 
Solve for 6*, the lowest value of 6 such that the firms can use 
trigger strategies to sustain these monopoly price levels (i.e., to 
3lay Pi when demand is ait for i = H, L) in a subgame-perfect 
\?ash equilibrium. For each value of 6 between 1/2 and 6', find 
the highest price p(6) such that the firms can use trigger strategies 

} sustain the price p(6) when demand is high and the price pL 



136 DYNAMIC GAMES OF COMPLETE INFORMATION 

when demand is low in a subgame-perfect Nash equilibrium. (See 
Rotemburg and Saioner 1986.) 

2.15. Suppose there are n firms in a Cournot oligopoly. Inverse 
demand is given by P(Q) = a - Q, where Q = c\\ -\ \- qn. Con
sider the infinitely repeated game based on this stage game. What 
is the lowest value of 6 such that the firms can use trigger strate
gies to sustain the monopoly output level in a subgame-perfect 
Nash equilibrium? How does the answer vary with n, and why? 
If b is too small for the firms to use trigger strategies to sus
tain the monopoly output, what is the most-profitable symmet
ric subgame-perfect Nash equilibrium that can be sustained using 
trigger strategies? 

2.16. In the model of wages and employment analyzed in Sec
tion 2.1.C, the backwards-induction outcome is not socially effi
cient. In practice, however, a firm and a union negotiate today 
over the terms of a three-year contract, then negotiate three years 
from today over the terms of a second contract, and so on. Thus, 
the relationship may be more accurately characterized as a re
peated game, as in Espinosa and Rhee (1989). 

This problem derives conditions under which a subgame-
perfect Nash equilibrium in the infinitely repeated game is Pareto-
superior to the backwards-induction outcome of the one-shot 
game. Denote the union's utility and the firm's profit in the 
backwards-induction outcome of the one-shot game by U" and 
-", respectively. Consider an alternative utility-profit pair (U.'i 
associated with an alternative wage-employment pair (w,L). Sup
pose that the parties share the discount factor 6 (per three-year 
period). Derive conditions on (w.L) such that (1) (U, -n) Pareto-
dominates (V \l,rc) is the outcome of a subgame-

perfect Nash equilibrium of the infinitely repeated game, where 
U". r* i is played forever following a deviation. 

2.17. Consider the following infinite-horizon game between a 
single firm and a sequence of workers, each of whom lives for 
one period. In each period the worker chooses either to expend 
effort and so produce output y at effort cost c or to expend no ef
fort, produce no output, and incur no cost. If output is produced, 
the firm owns it but can share it with the worker by paying a 
wage, as described next. Assume that at the beginning of the 
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nod the worker has an alternative opportunity worth zero (net 
f effort cost) and that the worker cannot be forced to accept a 

„ e ^ s than zero. Assume also that y > c so that expending 

effort is efficient. 
Within each period, the riming of events is as follows; first the 

vvorker chooses an effort level, then output is observed by both 
the firm and the worker, and finally the firm chooses a wage to 
pay the worker. Assume that no wage contracts can be enforced: 
the firm's choice of a wage is completely unconstrained. In a one-
period game, therefore, subgame-perfection implies that the firm 
will offer a wage of zero independent of the worker's output, so 
the worker will not expend any effort. 

Now consider the infinite-horizon problem. Recall that each 
vvorker lives for only one period. Assume, however, that at the 
beginning of period t, the history of the game through period I-1 
is observed by the worker who will work in period t. (Think of 
this knowledge as being passed down through the generations 
of workers.) Suppose the firm discounts the future according to 
the discount factor 6 per period, Describe strategies for the firm 
and each worker in a subgame-perfect equilibrium in the infinite-
horizon game in which in equilibrium each worker expends effort 
and so produces output y, provided the discount factor is high 
enough. Give a necessary and sufficient condition for your equi
librium to exist. 

Section 2.4 

What is a strategy (in an arbitrary game)? What is an in
formation set? What is a subgame (in an arbitrary game)? 

In the three-period version of Rubinstein's bargaining model 
atyzed in Section 2.1.D, we solved for the backwards-induction 

outcome. What is the subgame-perfect Nash equilibrium? 

°- Consider the following strategies in the infinite-horizon ver-
1 of Rubinstein's bargaining model. (Recall the notational con-
ion that the offer (s, 1 - s) means that Player 1 will get s and 

2 will get 1 - s, independent of who made the offer.) Let 
1/(1 + b). Player 1 always offers (s*. 1 - s') and accepts an 

; ' l - s) only if s > 6s'. Player 2 always offers (1 - s'.s 'j 
a accepts an offer (s, 1 - s) only if 1 - s > 6s*. Show that these 
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strategies are a Nash equilibrium. Show that this equilibrium is 
subgame-perfect. 

2.21. Give the extensive-form and normal-form representations 
of the grenade game described in Section 2.1. What are the pure-
strategy Nash equilibria? What is the backwards-induction out
come? What is the subgame-perfect Nash equilibrium? 

2.22. Give the extensive- and normal-form representations of the 
bank-runs game discussed in Section 2.2.B. What are the pure-
strategy subgame-perfect Nash equilibria? 

2.23. A buyer and seller would like to trade. Before they do, 
the buyer can make an investment that increases the value he or 
she puts on the object to be traded. This investment cannot be 
observed by the seller, and does not affect the value the seller 
puts on the object, which we normalize to zero. (As an example, 
think of one firm buying another. Some time before the merger, 
the acquirer could take steps to change the products it plans to 
introduce, so that they mesh with the acquired firm's products 
after the merger. If product development takes time and product 
life cycles are short, there is not enough time for this investment 
by the acquirer to occur after the merger.) The buyer 's initial 
value for the object is v > 0; an investment of I increases the 
buyer's value to v + J but costs I2. The timing of the game is as 
follows: First, the buyer chooses an investment level I and incurs 
the cost I2. Second, the seller does not observe / but offers to 
sell the object for the price p. Third, the buyer accepts or rejects 
the seller's offer if the buyer accepts, then the buyer ' s payoff is 
v + I - p -12 and the seller's is p; if the buyer rejects, then these 
payoffs are -I2 and zero, respectively. Show that there is no pure-
strategy subgame-perfect Nash equilibrium of this game. Solve 
for the mixed-strategy subgame-perfect Nash equilibria in which 
the buyer's mixed strategy puts positive probability on only two 
levels of investment and the seller's mixed strategy puts positive 
probability on only two prices. 
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Chapter 3 

Static Games of Incomplete 
Information 

This chapter begins our study of games of incomplete information, 
also called Bayesian games. Recall that in a game of complete infor
mation the players' payoff functions are common knowledge. In 
a game of incomplete information, in contrast, at least one player 
is uncertain about another player's payoff function. One common 
example of a static game of incomplete information is a sealed-bid 
auction: each bidder knows his or her own valuation for the good 
being sold but does not know any other bidder's valuation; bids 
are submitted in sealed envelopes, so the players' moves can be 
thought of as simultaneous. Most economically interesting Bayes
ian games, however, are dynamic. As we will see in Chapter 4, 
the existence of private information leads naturally to attempts by 
informed parties to communicate (or mislead) and to attempts by 
uninformed parties to learn and respond. These are inherently 
dynamic issues. 

In Section 3.1 we define the normal-form representation of a 
static Bayesian game and a Bayesian Nash equilibrium in such 
a game. Since these definitions are abstract and a bit complex, 
we introduce the main ideas with a simple example—Cournot 
competition under asymmetric information. 

In Section 3.2 we consider three applications. First, we provide 
a formal discussion of the interpretation of a mixed strategy given 
m Chapter 1: player j's mixed strategy represents player fs uncer
tainty about j's choice of a pure strategy, and j's choice depends on 
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the realization of a small amount of private information. Second, 
we analyze a sealed-bid auction in which the bidders ' valuations 
are private information but the seller's valuation is known. Fi
nally, we consider the case in which a buyer and a seller each 
have private information about their valuations (as when a firm 
knows a worker's marginal product and the worker knows his 
or her outside opportunity). We analyze a trading game called a 
double auction: the seller names an asking price and the buyer 
simultaneously names an offer price; trade occurs at the average 
of the two prices if the latter exceeds the former. 

In Section 3.3 we state and prove the Revelation Principle, and 
briefly suggest how it can be applied in designing games when 
the players have private information. 

3.1 Theory: Static Bayesian Games and Bayesian 
Nash Equilibrium 

3.1.A An Example: Cournot Competit ion under 
Asymmetric Information 

Consider a Cournot duopoly model with inverse demand given 
by P(Q) - o - Q, where Q = c\\ + q2 is the aggregate quantity 
on the market. Firm Vs cost function is C\{q\) = cq\. Firm 2's 
cost function, however, is C2{c\2) = CH<?2 w i t h probability 6 and 
£2(^2) = c'-<?2 with probability 1-0, where Ci < c^. Furthermore, 
information is asymmetric: firm 2 knows its cost function and 
firm Ts, but firm 1 knows its cost function and only that firm 2's 
marginal cost is cu with probability 0 and cL with probability 1 -0. 
(Firm 2 could be a new entrant to the industry, or could have just 
invented a new technology.) All of this is common knowledge: 
In m 1 knows that firm 2 has superior information, firm 2 knows 
that firm 1 knows this, and so on. 

Naturally, firm 2 may want to choose a different (and pre-
ninably lower) quantity if its marginal cost is high than if it is 

low. Firm 1, foi its part, should anticipate that firm 2 may tailor 
itfl quantity to its cost in this way. Let q2(cn) a n d q2(

cl) denote 
firm 2's quantity choices as a function of its cost, and let q\ de
note firm Ts single quantity choice. If firm 2's cost is high, it will 

Theory 145 

choose q2(cH) to solve 

max [{a - q\ - q2) - cH}q2. 

Similarly, if firm 2's cost is low, q2(cL) will solve 

max [{a - q\ - q2) - cL)q2. 

Finally, firm 1 knows that firm 2's cost is high with probability 0 
and should anticipate that firm 2's quantity choice will be q2(cn) 
or q*2{cL), depending on firm 2's cost. Thus, firm 1 chooses q\ to 
solve 

max 0[{a - qi - q2(cH)) - c]qA + (1 - 0)[{a - ^ - q*2(cL)) - c)qx 

to maximize expected profit. 
The first-order conditions for these three optimization prob

lems are 

q*{cL) = « Z f i ^ f 

0[a - q*2(cH) - c] + (1 - 0)[(a - qj{cL) - c] 
Hi- 2 • 

Assume that these first-order conditions characterize the solutions 
to the earlier optimization problems. (Recall from Problem 1.6 
that in a complete-information Cournot duopoly, if the firms' costs 
are sufficiently different then in equilibrium the high-cost firm 
produces nothing. As an exercise, find a sufficient condition to 

out the analogous problems here.) The solutions to the three 
first-order conditions are 

a-2cH + c 1-0. q2{cH) = + _ _ _ ( C H _ C L ) ? 

*, fl-2cL + c 01 q2(cL) = ~(cH-cL), 

and 
, _ a - 2c + 0cH + (1 - 0)C1 

3 
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Compare q^(cH), q2{cL), and q\ to the Cournot equilibrium un
der complete information with costs C] and c2. Assuming that the 
values of C\ and c2 are such that both firms' equilibrium quanti
ties are both positive, firm i produces q* = (a - 2c,- -f c,)/3 in this 
complete-information case. In the incomplete-information case, in 
contrast q2(cn) is greater than {a - 2c# + c)/3 and g|(cL) is less 
than (a - 2cL + c)/3. This occurs because firm 2 not only tailors 
its quantity to its cost but also responds to the fact that firm 1 
cannot do so. If firm 2's cost is high, for example, it produces less 
because its cost is high but also produces more because it knows 
that firm 1 will produce a quantity that maximizes its expected 
profit and thus is smaller than firm 1 would produce if it knew 
firm 2's cost to be high. (A potentially misleading feature of this 
example is that q\ exactly equals the expectation of the Cournot 
quantities firm 1 would produce in the two corresponding games 
of complete information. This is typically not true; consider the 
case in which firm i's total cost is qqj, for example.) 

3.1.B Normal-Form Representation of Static Bayesian 
Games 

Recall that the normal-form representation of an n-player game 
of complete information is G — \S\.. . S„; U\... un}, where S-, is 
player i's strategy space and K,(S],..., s„) is player i's payoff when 
the players choose the strategies (si,... ,s„). As discussed in Sec
tion 2.3.B, however, in a simultaneous-move game of complete 
information a strategy for a player is simply an action, so we can 
write G = {A]...An;it\...«„}, where A, is player i's action space 
and K,{«i,...,««) is player i's payoff when the players choose the 
actions (fl),.. .,an). To prepare for our description of the timing of 
a static game of incomplete information, we describe the timing of 
a static game of complete information as follows: (1) the players si
multaneously choose actions (player i chooses a, from the feasible 
set Aj), and then (2) payoffs Wj(«i,... ,a„) are received. 

We now want to develop the normal-form representation of a 
simultaneous-move game of incomplete information, also called a 
static Bayesian game. The first step is to represent the idea that 
each player knows his or her own payoff function but may be 
uncertain about the other players' payoff functions. Let player i's 
possible payoff functions be represented by U\{a\,... ,a„; t,), where 
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t, is called player i's type and belongs to a set of possible types 
(or type space) T,. Each type t, corresponds to a different payoff 
function that player i might have. 

As an abstract example suppose player i has two possible pay
off functions. We would say that player i has two types, U\ and 
fl2, that player i's type space is T, = {tnti2}f and that player i's two 
payoff functions are u-x{p\ , . . . ,«„; fn) and ufa,..., fl«; ti2). We can 
use the idea that each of a player's types corresponds to a different 
payoff function the player might have to represent the possibility 
that the player might have different sets of feasible actions, as fol
lows. Suppose, for example, that player i's set of feasible actions 
is {a.b} with probability q and {a,b,c} with probability \-q. Then 
we can say that i has two types (f(1 arid t,2, where the probability 
of f,i is q) and we can define i's feasible set of actions to be {a, b,c} 
for both types but define the payoff from taking action c to be -oo 
for type tn. 

As a more concrete example, consider the Cournot game in 
the previous section. The firms' actions are their quantity choices, 
cji and q2. Firm 2 has two possible cost functions and thus two 
possible profit or payoff functions: 

7T2(<7i. <]i; CL) = [(« -q\~ qi) - cL}q2 

and 
7T2(9i > <?2; cH) = [{a -qi- qi) - cH)qi-

Firm 1 has only one possible payoff function: 

""1 (<?l i <?2; c) = [(o - q\ - q2) - c)q\. 

We say that firm 2's type space is Tz = {CI.CH} and that firm I's 
type space is T\ — \c}. 

Given this definition of a player's type, saying that player i 
knows his or her own payoff function is equivalent to saying that 
player i knows his or her type. Likewise, saying that player i may 
be uncertain about the other players' payoff functions is equivalent 
to saying that player i may be uncertain about the types of the 
other players, denoted by £_,- = (fi,... ,r,_i,f1+i,...,t„). We use 

to denote the set of all possible values of r_,-, and we use the 
probability distribution p,-(f_,- | f,-) to denote player i's belief about 

>ther players' types, £_,, given player i's knowledge of his 
er own type, r,. In every application analyzed in Section 3.2 
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(and in most ot the literature), the players types are independent, 
in which case p,(f_i | /,) does not depend on tir so we can write 
player i's belief as pj(f-_f). There are contexts in which the players' 

are correlated, 1 so we allow for this in our definition 
oi a static Bayesian game by writing player i's belief as p,-(f_,-1 fj).1 

Joining the new concepts of types and beliefs with the familiar 
elements of the normal-form representation of a static game of 
complete information yields the normal-form representation of a 
static Bayesian game. 

Definition The normal-form representation of an n-player static 
Bayesian game specifics the players' action spaces A\ An, their type 

their beliefs pi pa, and their payoff functions it \ 
//„. Plamr i's hfpe, t,, is privately known by player i, determines player 
i's payoff function, u,(ai a„; t,), ami is a member of the set of possible 

belief /',(f_j | t,) describes i's uncertainty about the 
n - 1 other players' possible types, f _,, given i's own type, t,. We denote 

me by G- [A] A„;T, Tn',p\ pn) " i , • • •, u„}. 

Following Harsanyi (1967), we will assume that the timing of a 
static Bayesian game is as follows: (1) nature draws a type vector 
t = {t\ / where /, is drawn from the set of possible types 
T,; (2) nature reveals fj to player i but not to any other player; 
(3) the players simultaneously choose actions, player i choosing a, 
from the feasible set A,-; and then (4) payoffs u,(fli ,flM;f,-) are 
received. By introducing the fictional moves by nature in steps (1) 
and (2), we have described a game of incomplete information as a 
game of imperfect information, where by imperfect information we 
mean (as in Chapter 2) that at some move in the game the player 
with the move does not know the complete history of the game 
thus far. Here, because nature reveals player i's type to player i 
but not to player / in step (2), player / does not know the complete 
history of the game when actions are chosen in step (3). 

Two slightly more technical points need to be covered to com
plete our discussion of normal-form representations of static Bayes-

inugine that two firms are racing to develop a new technology. Each firm's 
chance of success depends in part on how difficult the technology is to develop, 
which is not known Each firm knows only whether it has succeeded and not 
whether the other has. II firm 1 has succeeded, however, then it is more likely 
that the technology is easy to develop and so also more likely that firm 2 has suc
ceeded. Thus, firm I's belief about firm 2's type depends on firm I 's knowledge 
of Us own type. 
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First there are games in which player /' has private 
nation not only about his or her own payoff function but 
boui another player's payoff function. In Problem 3.2, for 

the asymmetric-information Cournot model from Sec-
I I A is changed so that costs are symmetric and common 

knowledge but one firm knows the level of demand and the other 
not. Since the level of demand affects both players' payoff 

functions, the informed firm's type enters the uninformed firm's 
'action. In the n-player case we capture this possibility 

b) allowing player i's payoff to depend not only on the actions 
,au) but also on all the types (t\ t„). We write this pay-
"ifai rt«;fi 1„). 

;cond technical point involves the beliefs, j>j(f_j | fj). 
We will assume that it is common knowledge that in step (1) of 

irning of a static Bayesian game, nature draws a type vector 
I f„) according to the prior probability distribution p{t). 

When nature then reveals fj to player /', he or she can compute the 
f_,- | t,) using Bayes' rule:2 

„.(, .m_PJLiM _PiL"M_ 
'•(f-'"')- m £ *._„»,)• 

i- ,eT_i 

Furthermore, the other players can compute the various beliefs 
that player f might hold, depending on i's type, namely p,-(f_,- | fj) 

ich t, in Tj. As already noted, we will frequently assume that 
flayers' types are independent, in which case p,{i--/) does not 
iid on tj but is still derived from the prior distribution p(t). 

In this case the other players know i's belief about their types. 

3.1.C Def init ion of Bayes i an Nash Equil ibrium 

We now want to define an equilibrium concept for static Bayesian 
I o do so, we must first define the players' strategy spaces 

ule provides a formula tor P(A | B), the (conditional) probability that 
will occur given that an event I? has already occurred. Let P(A), P(B), 

I) be the (prior) probabilities (i.e., the probabilities before either A or r> 
i nance to take place) that A will occur, that B will occur, and that both 
HI occur, respectively Bayes' rule states that P(A | B) = P{A,B)/P{B). 

le conditional probability of ,4 given B equals the probability that both 
Will occur, divided by the prior probability that 8 will occur. 
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in such a game. Recall from Sections 2.3.B and 2.4.B that a player's 
strategy is a complete plan of action, specifying a feasible action 
in every contingency in which the player might be called on to 
act. Given the timing of a static Bayesian game, in which nature 
begins the game by drawing the players' types, a (pure) strategy 
for player i must specify a feasible action for each of player i's 
possible types. 

Definition In the static Bayesian game G = {A\,..., A„;T\,...,Tn', 
pi p,u u\ u„}, a strategy for player i is a function s,(f,), where 
for each type f, in T„ s,(f,-) specifies the action from the feasible set A\ that 
type t, would choose if drawn by nature. 

Unlike (both static and dynamic) games of complete information, 
in a Bayesian game the strategy spaces are not given in the normal-
form representation of the game. Instead, in a static Bayesian 
game the strategy spaces are constructed from the type and action 
spaces: player i's set of possible (pure) strategies, S„ is the set 
of all possible functions with domain T, and range A,. In a sepa
rating strategy, for example, each type t, in T, chooses a different 
action a, from A,-. In a pooling strategy, in contrast, all types choose 
the same action. This distinction between separating and pooling 
strategies will be important in our discussion of dynamic games 
of incomplete information in Chapter 4. We introduce the distinc
tion here only to help describe the wide variety of strategies that 
can be constructed from a given pair of type and action spaces, T, 
and Ai. 

It may seem unnecessary to require player i's strategy to spec
ify a feasible action for each of player i's possible types. After 
all, once nature has drawn a particular type and revealed it to a 
player, it may seem that the player need not be concerned with 
the actions he or she would have taken had nature drawn some 
other type. On the other hand, player i needs to consider what 
the other players will do, and what they will do depends on what 
they think player i will do, for each f, in T,. Thus, in deciding 
what to do once one type has been drawn, player i will have to 
think about what he or she would have done if each of the other 
types in T, had been drawn. 

Consider the asymmetric-information Cournot game in Sec
tion 3.1.A, for example. We argued that the solution to the game 
consists of three quantity choices: <£(CH)/ I'I^L)-

 a n c l 1\- I n terms 
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of the definition of a strategy just given, the pair ( ^ ( C H M ^ L ) ) 

is firm 2's strategy and q\ is firm I's strategy. It is easy to imag
ine that firm 2 will choose different quantities depending on its 
cost. It is equally important to note, however, that firm I's sin
gle quantity choice should take into account that firm 2's quantity 
will depend on firm 2's cost in this way. Thus, if our equilibrium 
concept is to require that firm I's strategy be a best response to 
frrm 2's strategy, then firm 2's strategy must be a pair of quantities, 
one for each possible cost type, else firm 1 simply cannot compute 
whether its strategy is indeed a best response to firm 2's. 

More generally, we would not be able to apply the notion of 
Nash equilibrium to Bayesian games if we allowed a player's 
strategy not to specify what the player would do if some types 
were drawn by nature. This argument is analogous to one from 
Chapter 2: it may have seemed unnecessary to require player fs 
strategy in a dynamic game of complete information to specify a 
feasible action for each contingency in which player i might be 
called on to move, but we could not have applied the notion of 
Nash equilibrium to dynamic games of complete information if 
we had allowed a player's strategy to leave the player's actions 
in some contingencies unspecified. 

Given the definition of a strategy in a Bayesian game, we turn 
next to the definition oi a Bayesian Nash equilibrium. In spite 
of the notational complexity of the definition, the central idea is 
both simple and familiar: each player's strategy must be a best 
response to the other players' strategies. That is, a Bayesian Nash 
equilibrium is simply a Nash equilibrium in a Bayesian game. 

Definition In the static Bayesian game G = {A\ A„; T\,..., Tn; 
.. pni "i un}, thestrategiess* = ( s j , . . . , s*)area(pure-strategy) 

Bayesian Nash equilibrium if for each player i and for each of i's types 
fj in Tj, s*(tj) solves 

max £ "i(si(ri),...,s^1(r I-_1),a f,s IVi(^+i),-..,s«(O;0Pi('-iUi)-

That is, no player wants to change his or her strategy, even if the cliange 
involves only one action by one type. 

It is straightforward to show that in a finite static Bayesian game 
(i.e., a game in which n is finite and {A\,...,An) and (T\,...,Tn) 
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are all finite sets) there exists a Bayesian Nash equilibrium, per
haps in mixed strategies. The proof closely parallels the proof of 
the existence of a mixed-strategy Nash equilibrium in finite games 
of complete information, and so is omitted here. 

3.2 Applications 

3.2.A Mixed Strategies Revisited 

As we mentioned in Section 1.3.A, Harsanyi (1973) suggested that 
player j's mixed strategy represents player j's uncertainty about 
j's choice of a pure strategy, and that j's choice in turn depends 
on the realization of a small amount of private information. We 
can now give a more precise statement of this idea: a mixed-
strategy Nash equilibrium in a game of complete information can 
(almost always) be interpreted as a pure-strategy Bayesian Nash 
equilibrium in a closely related game with a little bit of incom
plete information. (We will ignore the rare cases in which such an 
interpretation is not possible.) Put more evocatively, the crucial 
feature of a mixed-strategy Nash equilibrium is not that player;' 
chooses a strategy randomly, but rather that player i is uncertain 
about player j's choice; this uncertainty can arise either because of 
randomization or (more plausibly) because of a little incomplete 
information, as in the following example. 

Recall that in the Battle of the Sexes there are two pure-strategy 
Nash equilibria (Opera, Opera) and (Fight, Fight) and a mixed-
str-ategy Nash equilibrium in which Chris plays Opera with prob
ability 2/3 and Pat plays Fight with probability 2/3. 

Pat 

Opera Fight 

Chris ^ ^ 
Fight 

2,1 

0,0 

0,0 

1,2 

The Battle of the Sexes 
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Now suppose that, although they have known each other for 
quite some time, Chris and Pat are not quite sure of each other's 
payoffs. In particular, suppose that: Chris's payoff if both at-

I the Opera is 2 + tc, where tc is privately known by Chris; 
Pat's payoff if both attend the Fight is 2 + tp, where tp is pri
vately known by Pat; and tc and tp are independent draws from 

liform distribution on [0,x]. (The choice of a uniform distri
bution on [0,.t] is not important, but we do have in mind that 
the values of tc and tp only slightly perturb the payoffs in the 
original game, so think of x as small.) All the other payoffs are 
the same. In terms of the abstract static Bayesian game in nor
mal form G = {Ac,Ap;Tc,Tp;pc,pp;uc,up}, the action spaces are 
Ac = Ap = {Opera, Fight}, the type spaces are Tc = Tp = [0,x], the 
beliefs are pc(tp) = pp(tc) == 1/x for all tc and tp, and the payoffs 
are as follows. 

Pat 

Opera Fight 
r~ 

Opera 
Chris 

Fight 

The Battle of the Sexes with Incomplete Information 

We will construct a pure-strategy Bayesian Nash equilibrium 
of this incomplete-information version of the Battle of the Sexes in 
which Chris plays Opera if tc exceeds a critical value, c, and plays 
Fight otherwise and Pat plays Fight if tp exceeds a critical value, 
p, and plays Opera otherwise. In such an equilibrium, Chris plays 
Opera with probability (x - c)/x and Pat plays Fight with proba
bility (x - p)/x. We will show that as the incomplete information 
disappears (i.e., as x approaches zero), the players' behavior in this 
pure-strategy Bayesian Nash equilibrium approaches their behav
ior in the mixed-strategy Nash equilibrium in the original game 
of complete information. That is, both (x - c)/x and (.t - p)/x 
aPproach 2/3 as x approaches zero. 

Suppose Chris and Pat play the strategies just described. For 
a given value of x, we will determine values of c and p such 
that these strategies are a Bayesian Nash equilibrium. Given Pat's 

2 + rc,l 

0,0 

0,0 

1,2-Mp 
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strategy, Chris's expected payoffs from playing Opera and from 
playing Fight are 

EJ2 + tc) + 1-2 • 0 = £ ( 2 + rc) 

and 

£ . o + i - e . i - i - t , 

respectively. Thus playing Opera is optimal if and only if 

tc > - - 3 = c. 
" P 

(3.2.1] 

Similarly, given Chris's strategy, Pat's expected payoffs from play
ing Fight and from playing Opera are 

i-c-
x 

0+C-(2 + tp)=
C-(2 + tp) 

and 

i + £ . o - i - £ , 

respectively. Thus, playing Fight is optimal if and only if 

fp > \ - 3 = p- (3"22) 

Solving (3.2.1) and (3.2.2) simultaneously yields p = c and f -
3p - x - 0. Solving the quadratic then shows that the probability 
that Chris plays Opera, namely (x - c)/x, and the probability that 
Pat plays Fight, namely (x - p)/x, both equal 

1 -
- 3 + V9 + 4x 

2x 

which approaches 2/3 as x approaches zero. Thus, as the incom
plete information disappears, the players' behavior in this pure-
strategy Bayesian Nash equilibrium of the incomplete-information 
game approaches their behavior in the mixed-strategy Nash equi
librium in the original game of complete information. 
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3.2.B An Auction 

Consider the following first-price, sealed-bid auction. There are 
two bidders, labeled i = 1,2. Bidder i has a valuation V\ for the 
good—that is, if bidder i gets the good and pays the price p, then 
,'s payoff is v-x - p. The two bidders' valuations are independently 
and uniformly distributed on [0,1]. Bids are constrained to be 
nonnegarive. The bidders simultaneously submit their bids. The 
higher bidder wins the good and pays the price she bid; the other 
bidder gets and pays nothing. In case of a tie, the winner is 
determined by a flip of a coin. The bidders are risk-neutral. All 
of this is common knowledge. 

In order to formulate this problem as a static Bayesian game, 
we must identify the action spaces, the type spaces, the beliefs, and 
the payoff functions. Player /'s action is to submit a (nonnegative) 
bid, b\, and her type is her valuation, vx. (In terms of the abstract 
game G = {A^A^T^T^p^pDu^u-^, the action space is At = 
[0,oo) and the type space is T, = [0.1].) Because the valuations 
are independent, player i believes that Vj is uniformly distributed 
on [0,1], no matter what the value of v,. Finally, player i's payoff 
function is 

I Vi - bt if hi > bj, 

{Vj-bi)/2 if &, = &,-, 

0 if bi < bj. 
To derive a Bayesian Nash equilibrium of this game, we be

gin by constructing the players' strategy spaces. Recall that in a 
static Bayesian game, a strategy is a function from types to actions. 
Thus, a strategy for player i is a function &,-(»,•) specifying the bid 
that each of i's types (i.e., valuations) would choose. In a Bayesian 
Nash equilibrium, player I's strategy b\(v\) is a best response to 
player 2 s strategy ^2(^2)/ a n ^ vice versa. Formally, the pair of 
strategies (b{vi),b(v2)) is a Bayesian Nash equilibrium if for each 
v> ™ [0A], bi{v-) solves 

max {v, - bi)Prob{b; > bj{vj)} + -(vt - b;)Prob{&,- = bfoj)}. 

We simplify the exposition by looking for a linear equilibrium: 
Myi) = «T + c\V\ and £2(^2) = a2 + Wi- Note well that we are 
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not restricting the players' strategy spaces to include only linear 
strategies. Rather, we allow the players to choose arbitrary strate
gies but ask whether there is an equilibrium that is linear. It turns 
out that because the players' valuations are uniformly distributed, 
a linear equilibrium not only exists but is unique (in a sense to be 
made precise). We will find that fe,-(t;,-) = Vj/2. That is, each player 
submits a bid equal to half her valuation. Such a bid reflects the 
fundamental trade-off a bidder faces in an auction: the higher the 
bid, the more likely the bidder is to win; the lower the bid, the 
larger the gain if the bidder does win. 

Suppose that player / adopts the strategy bj(Vj) = a} + CjVj. For 
a given value of i>„ player i's best response solves 

max (vi - bj)Prob{bj > fly + CjVj}, 

where we have used the fact that Prob{b,- = bj(Vj)} = 0 (because 
bj(Vj) = fly + CjVj and Vj is uniformly distributed, so bj is uniformly 
distributed). Since it is pointless for player / to bid below player/'s 
minimum bid and foolish for / to bid a b o v e / s maximum bid, we 
have aj<bi<aj-\-cj, so 

Probfa > a, + cfUj} = Prob L < — "' 1 - ^ ^ 
Cj j Cj 

Player i's best response is therefore 

( A; if V( < fly. 

If 0 < fly < 1 then there are some values of v\ such that Vj < a]t in 
which case b,(v,) is not linear; rather, it is flat at first and positively 
sloped later. Since we are looking for a linear equilibrium, we 
therefore rule out 0 < fly < 1, focusing instead on fly > 1 and fly < °-
But the former cannot occur in equilibrium: since it is optimal for 
a higher type to bid at least as much as a lower type's optimal 
bid, we have c} > 0, but then fl; > 1 would imply that bj(Vj) > vi> 
which cannot be optimal. Thus, if b,(i;,) is to be linear, then we 
must have fly < 0, in which case b,(u,) = (uf- + fly)/2, so fl; = «;/2 

and c, = 1/2. 
We can repeat the same analysis for player; under the assump

tion that player i adopts the strategy b,-(i>,-) = A, + CjVj. This yields 
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a, < 0, fly = fli/2, and cy = 1/2. Combining these two sets of results 
then yields fl, = fly = 0 and a = cy = 1/2. That is, bj(Uj) = Uj/2, as 
claimed earlier. 

One might wonder whether there are other Bayesian Nash 
equilibria of this game, and also how equilibrium bidding changes 
as the distribution of the bidders' valuations changes. Neither of 
these questions can be answered using the technique just applied 
(of positing linear strategies and then deriving the coefficients that 
make the strategies an equilibrium): it is fruitless to try to guess all 
the functional forms other equilibria of this game might have, and 
a linear equilibrium does not exist for any other distribution of val
uations. In the Appendix, we derive a symmetric Bayesian Nash 
equilibrium,3 again for the case of uniformly distributed valua
tions. Under the assumption that the players' strategies are strictly 
increasing and differentiable, we show that the unique symmetric 
Bayesian Nash equilibrium is the linear equilibrium already de
rived. The technique we use can easily be extended to a broad 
class of valuation distributions, as well as the case of n bidders.4 

Appendix 3.2.B 

Suppose player ;' adopts the strategy b(-), and assume that b(-) is 
strictly increasing and differentiable. Then for a given value of v„ 
player i's optimal bid solves 

max (vi - bi)Prob{bi > b(vj)}. 

(bj) denote the valuation that bidder/ must have in order to 
d ty. That is, b-1(b;-) = Vj if bj - b{vj). Since Vj is uniformly dis

tributed on [0,1], Prob{&,- > b(vj)} = Probf l r 1 ^) > f/} = J r W 
first-order condition for player i's optimization problem is 

-b-'M + ivi-b^b-'ib^Q. 

ayesian Nash equilibrium is called symmetric if the players' strategies 
functi. nt l£a1' T h a t iS' ' n a s y m m e t r i c Bayesian Nash equilibrium, there is a single 
Hv{] k L r ' \ s u c h t h a t P l a y e r Vs strategy &,(D,) is ft(»,) and player 2's strategy 
since th i ' &nd t h 'S s i n g l e s t r a t e 8y i s a b e s t response to itself. Of course, 
be diffp6 P y e r s ' v a I u a t i o n s typically wriij be different their bids typically will 

4SkiDent' GVGn ' f b ° t h U S e t h e s a m e strate8V. 
, l ng this appendix will not hamper one's understanding of what follows. 
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This first-order condition is an implicit equation for bidder i's best 
response to the strategy b(-) played by bidder ;, given that bid
der i's valuation is Vf. If the strategy b(-) is to be a symmetric 
Bayesian Nash equilibrium, we require that the solution to the 
first-order condition be &(»,): that is, for each of bidder i's possi
ble valuations, bidder /' does not wish to deviate from the strategy 
b(-), given that bidder / plays this strategy. To impose this re
quirement, we substitute b\ = b(Vj) into the first-order condition, 
yielding: 

-b-\b(vt)) + (v, - bfa))ftb-Hb(Vi)) = 0. 

Of course, b_1(b(i>,-)) is simply Vj. Furthermore, d{b~l(b(vi))}/dbi -
\/b'(Vj). That is, d{b~l(bj)}/dbj measures how much bidder i's val
uation must change to produce a unit change in the bid, whereas 
b'(vj) measures how much the bid changes in response to a unit 
change in the valuation. Thus, b(-) must satisfy the first-order 
differential equation 

-»,+fo-»(„)) JL-o , 

which is more conveniently expressed as b'(Vj)Vj + b(Vj) = Vj. The 
left-hand side of this differential equation is precisely d{b{vi)vi)ldVi. 
Integrating both sides of the equation therefore yields 

Hvt)Vi = -vf + k, 

where k is a constant of integration. To eliminate k, we need 
a boundary condition. Fortunately, simple economic reasoning 
provides one: no player should bid more than his or her valuation. 
Thus, we require b{Vj) < Vj for every i;,. In particular, we require 
b(0) < 0. Since bids are constrained to be nonnegative, this implies 
that b(0) = 0, so k = 0 and b{vj) = v\j% as claimed. 

3.2.C A Double Auction 

We next consider the case in which a buyer and a seller each have 
private information about their valuations, as in Chatterjee and 
Samuelson (1983). (In Hall and Lazear [1984], the buyer is a firm 
and the seller is a worker. The firm knows the worker's marginal 
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product and the worker knows his or her outside opportunity. See 
problem 3.8.) We analyze a trading game called a double auction. 
The seller names an asking price, ps, and the buyer simultaneously 
names an offer price, pb. If pb > ps, then trade occurs at price 
p = (pb + ps)/2; if Pb < Ps, then no trade occurs. 

The buyer's valuation for the seller's good is vb, the seller's is 
vs. These valuations are private information and are drawn from 
independent uniform distributions on [0,1], If the buyer gets the 
good for price p, then the buyer's utility is vb - p; if there is no 
trade, then the buyer's utility is zero. If the seller sells the good 
for price p, then the seller's utility is p-vs; if there is no trade, then 
the seller's utility is zero. (Each of these utility functions measures 
the change in the party's utility. If there is no trade, then there is 
no change in utility. It would make no difference to define, say, 
the seller's utility to be p if there is trade at price p and vs if there 
is no trade.) 

In this static Bayesian game, a strategy for the buyer is a func
tion pb{vb) specifying the price the buyer will offer for each of the 
buyer's possible valuations. Likewise, a strategy for the seller is a 
function ps(vs) specifying the price the seller will demand for each 
of the seller's valuations. A pair of strategies {pb(vb),p${vs)} is a 
Bayesian Nash equilibrium if the following two conditions hold. 
For each vb in [0,1], pb(vb) solves 

max 
' Pb + E\Ps(Vs) \Pb>Ps{Vs)} 
vb 

Prob{p„>ps(i;s)}, (3.2.3) 

where E[ps(vs) \ pb > ps(vs)] is the expected price the seller will 
demand, conditional on the demand being less than the buyer's 
offer of pb. For each vs in [0,1], ps{vs) solves 

max 
Ps + E\pb(vb) | pb{vb) > Ps] n 

Prob{pb(vb)>p5}, (3.2.4) 

where E\pb(vb) \ pb(vb) > ps] is the expected price the buyer will of
fer, conditional on the offer being greater than the seller's demand 

There are many, many Bayesian Nash equilibria of this game, 
-onsider the following one-price equilibrium, for example, in 
which trade occurs at a single price if it occurs at all. For any 
value x in [0,1], let the buyer's strategy be to offer x if vb > x and 
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Figure 3.2.1. 

to offer zero otherwise, and let the seller's strategy be to demand 
\ and to demand one otherwise Given the buy* 

egy, the seller's chokes amount to trading at I or not trading, so 
the seller's strategy is a best response to the buyer's because the 
seller-types who prefer trading at % to not trading do so, and vice 
versa. The analogous argument shows that the buyer's strategy 
is a best response to the seller's, so these sti ire inch 
Bayesian Nash equilibrium. In this equilibrium, trade occurs for 
the Uvi'f,) pairs indicated in Figure 3.2.1; trade would be efficient 
for all UviV) pairs such that pj > i>5, but does not occur in the 
two shaded regions of the figure. 

We now derive a linear Bayesian Nash equilibrium of the dou
ble auction. As in the previous section, we are not restricting the 
players' strategy spaces to include only linear strategies. Rather, 
we allow the players to choose arbitrary strategies but ask whether 
there is an equilibrium that is linear. Many other equilibria exist 
besides the one-price equilibria and the linear equilibrium, but the 
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linear equilibrium has interesting efficiency properties, which we 
ibe later 

Suppose the seller's strategy is ps(vs) = as +csvs. Then ps is 
uniformly distributed on [fls,fls • uj, so (3.2.3) becomes 

1 f fPb 

vb - 2 [Pb + — 
the first order condition tor which yields 

max 
Pb 

Pb-"s 

2 1 
pb = ^ b + ^ s . (3.2.5) 

Thus, it the seller | i linear strategy, then the huyer's best 
alogOUsly suppose the huyer's strategy 

vb) = a, l hen pi is uniformly distributed on [ab.n, 

[ I f f ab + i db + Cb~ Ps 

the first-order condition for which yields 

2 1 
Ps = ^v8 + -{ab + c{ (3.2.6) 

Thus, if the buyer plays a linear strategy, then the seller's best 
response is also linear. If the players' linear strategies are to be 
best responses to each other, (3.2.5) implies that c\, = 2/3 and 
ab = as/3, and (3.2.6) implies that cs = 2/3 and as = (ab + cb)/l 
Therefore, the linear equilibrium strategies are 

and 

k) = \vb + ^ (3-2.7) 

• ) » k + j , (3-2-8) 
as shown in Figure 3.2.2. 

Recall that trade occurs in the double auction if and only if 
Pb > ps. Manipulating (3.2.7) and (3.2.8) shows that trade occurs 
in the linear equilibrium if and only if vb > vs + (1/4), as shown in 
figure 3.2.3. (Consistent with this, Figure 3.2.2 reveals that seller-
types above 3/4 make demands above the buyer's highest offer, 
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Wh 

Figure 3.2.2. 

p (i) = 3/4, and buyer-types below 1/4 make offers below the 
seller's lowest offer, p$(0) = 1/4.) 

Compare Figures 3.2.1 and 3.2.3—the depictions of which val
uation pairs trade in the one-price and linear equilibria, respec
tively. In both cases, the most valuable possible trade (namely, 
vs = 0 and vb = 1) does occur. But the one-price equilibrium 
misses some valuable trades (such as vs = 0 and vb — x — £, where 
e is small) and achieves some trades that are worth next to noth
ing (such as vs = x - £ and vb = x + £). The linear equilibrium, in 
contrast, misses all trades worth next to nothing but achieves all 
trades worth at least 1/4. This suggests that the linear equilibrium 
may dominate the one-price equilibria, in terms of the expected 
gains the players receive, but also raises the possibility that the 
players might do even better in an alternative equilibrium. 

Myerson and Satterthwaite (1983) show that, for the uniform 
valuation distributions considered here, the linear equilibrium 
yields higher expected gains for the players than any other Bayes-
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u b = t t s + (l/4) 
vt=Vf 

Figure 3.2.3. 

ian Nash equilibria of the double auction (including but far from 
limited to the one-price equilibria). This implies that there is no 
Bayesian Nash equilibrium of the double miction in which trade 
occurs if and only if it is efficient (i.e., if and only if vb > vs). They 
also show that this latter result is very general: if vb is continuously 
distributed on [xb,yb] and vs is continuously distributed on [.ts,i/s], 
where ys > xb and yb > xs, then there is no bargaining game the 
buyer and seller would willingly play that has a Bayesian Nash 
equilibrium in which trade occurs if and only if it is efficient. In 
the next section we sketch how the Revelation Principle can be 
used to prove this general result. We conclude this section by 
translating the result into Hall and Lazear's employment model: 
if the firm has private information about the worker's marginal 
product (m) and the worker has private information about his 
or her outside opportunity (v), then there is no bargaining game 
that the firm and the worker would willingly play that produces 
employment if and only if it is efficient (i.e., m > v). 
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3.3 The Revelation Principle 

The Revelation Principle, due to Myerson (1979) in the context 
of Bayesian games (and to others in related contexts), is an im
portant tool for designing games when the players have private 
information. It can be applied in the auction and bilateral trading 
problems described in the previous two sections, as well as in a 
wide variety of other problems. In this section w e state and prove 
the Revelation Principle tor static Ba) esian games ' extending the 
proof to cover dynamic Bayesian games is straightforward.) Be
fore doing so, however, we sketch the way the Rt •• I Vinciple 
1̂  used in the auction and bilateral-trading prol 

Consider a seller who wishes to design a tuction to maxi
mize his or her expected revenue. Specifying the many diff< 
auctions the seller should consider could be an enormous task. In 
the auction in Section 3.2.B, for example, the higl Ider paid 
money to the seller MM\ received the good, but there are many 
other possibilities. The bidders might have to pa) an entry fee. 
More generally, some of the losing bidders might have to pay 
money, perhaps in amounts that depend on tl n ^nd others' 
bids. Also, the seller might set a reservation price—a floor below 
which bids will not be accepted. More generally, the good might 
stay with the seller with some probability, and might not always 
go to the highest bidder when the seller does release it. 

Fortunately, the seller can use the Revelation Principle to sim
plify this problem dramatically, in two ways. First, the seller can 
restrict attention to the following class of gan 

1. The bidders simultaneously make (possibly dishonest) claims 
about their types (i.e., their valuations). Bidder i can claim 
to be any type r, from i's set of feasible types 7 , no matter 
what i's true type, f,\ 

2. Given the bidders' claims (r, r„), bidder i pays x,l n 
r„) and receives the good with probability q ,rn)- F°r 

each possible combination of claims (T{ .-„i, the sum of 
the probabilities q, (n r„) + • •. + qnfa r„) must be 
less than or equal to one. 

Games of this kind (i.e., static Bayesian games in which each 
player's only action is to submit a claim about his or her type) 
are called direct meefwnisms. 
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The second way the seller can use the Revelation Principle is 
to restrict attention to those direct mechanisms in which it is a 
Bayesian Nash equilibrium for each bidder to tell the truth—that 
is,payment ,md probability functions {X]{T\,...,T„),...,X„(T\,..., 

[l(ri 7 „ i q„ „)} such that each player i's equi
librium strat to claim r,(f,) = f, for each f, in T,. A direct 
mechanism in which truth-telling is a Bayesian Nash equilibrium 
is called in , npatible. 

Outside the i ontext of auction design, the Revelation Principle 
again be used in these two ways. Any Bayesian Nash equilib

rium of any Bayesian game can be represented by a new Bayesian 
Nash equilibrium in an appropriately chosen new Bayesian game, 
where b) ted we mean that for each possible combi
nation of tl types (h t„), the players' actions and 
payoffs in tl equilibrium are identical to those in the old 
equilibrium. No matter what the original game, the new Bayesian 
game is alw lirect mechanism; no matter what the origi
nal equilibrium, the new equilibrium in the new game is always 
truth-telling. More formally: 

Theorem (The Revelation Principle) Any Bayesian Nash equilib
rium of am/ Btn/i tie can be represented by an compatible 
direct mechanism. 

In the auction analyzed in Section 3.2.B we assumed that the 
bidders' valuations are independent of each other. We also as
sumed (implicitly, in the definition of the bidders' valuations) 
that knowing bidder f's valuation would not change bidder i's 
valuation (although such knowledge typically would change i's 
bid). We characterize these two assumptions by saying that the 
bidders have independent, private values. For this case, My
erson (1981) determines which direct mechanisms have a truth-
telling equilibrium, and which of these equilibria maximizes the 
seller's expected payoff. The Revelation Principle then guaran
tees that no other auction has a Bayesian Nash equilibrium that 
yields the seller a higher expected payoff, because such an equilib
rium of such an auction would have been represented by a truth-
telling equilibrium of a direct mechanism, and .nil such incentive-
compatible direct mechanisms were considered. Myerson also 
shows that the symmetric Bayesian Nash equilibrium of the 
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auction analyzed in Section 3.2.B is equivalent to this payoff-maxi
mizing truth-telling equilibrium (as are the symmetric equilibria 
of several other well-known auctions). 

As a second example of the Revelation Principle in action, con
sider the bilateral trading problem described in Section 3.2.C. We 
analyzed one possible trading game the buyer and seller could 
play_the double auction. In that game, if there is trade then the 
buyer pays something to the seller, while if there is no trade then 
there is no payment, but there are again many other possibili
ties. There could be payments (from the buyer to the seller, or 
\ice versa) even if there is no trade, and the probability of trade 
could be strictly between zero and one. Also, the rule for deter
mining whether trade is to occur could require that the buyer's 
offer exceed the seller's demand by a certain (positive or negative) 
amount; this amount could even vary depending on the prices the 
parties name. 

We can capture these possibilities by considering the follow
ing class of direct mechanisms: the buyer and the seller simul
taneously make claims about their types, rb and TS, after which 
the buyer pays the seller hich could be positive or neg
ative, and the buyer receives the good with probability q(Tb,Ts). 
Myerson and Satterthwaite determine which direct mechanisms 
have a truth-telling equilibrium. They then impose the constraint 
that each tvpe of each part}' be willing to play the game (i.e., that 
each type of each part)' have an equilibrium expected payoff no 
less than the payoff that type could achieve by refusing to play— 
namely, zero for each buyer type and ts for the seller type fs). 
Finally, they show that none of these incentive-compatible direct 
mechanisms have trade with probability one if and only if trade 
is efficient. The Revelation Principle then guarantees that there 
is no bargaining game the buyer and seller would willingly play 
that has a Bayesian Nash equilibrium in which trade occurs if and 
only if it is efficient. 

To give a formal statement and proof of the Revelation Princi
ple, consider the Bayesian Nash equilibrium s* = (s\ s*) in the 
static Bayesian game G = {A^... ,An;T\, ••.. Tn;p\ p n ) U \ . . . . . 
u„). We will construct a direct mechanism with a truth-telling 
equilibrium that represents s". The appropriate direct mechanism 
is a static Bayesian game with the same type spaces and beliefs 
as G but with new action spaces and new payoff functions. The 
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new action spaces are simple. Player i's feasible actions in the di
rect mechanism are (possibly dishonest) claims about i's possible 
types. That is, player i's action space is T,. The new payoff func
tions are more complicated. They depend not only on the original 
game, G, but also on the original equilibrium in that game, s*. 
The crucial idea is to use the fact that $' is an equilibrium in G to 
ensure that truth-telling is an equilibrium of the direct mechanism, 
as follows. 

Saying that s* is a Bayesian Nash equilibrium of G means that 
for each player i, s* is i's best response to the other players' strate
gies (sj s*_!, s*+1 s*). More specifically, for each of i's types 
ti in 7"i, s*(fj) is the best action for i to choose from Au given that the 
other players' strategies are ( s j , . . . , s*^, s*+1,.... s*). Thus, if i's 
type is f, and we allow i to choose an action from a subset of A, that 
includes s*(f,), then i's optimal choice remains s?(*,-), again assum
ing that t ie other players' strategies are (sj sj_vsj+l s„). 
The payoff functions in the direct mechanism are chosen so as to 
confront each player with a choice of exactly this kind. 

We define the payoffs in the direct mechanism by substituting 
the players' type reports in the new game, r = (ri,...,r„), into 
their equilibrium strategies from the old game, 5*, and then sub
stituting the resulting actions in the old game, S*(T) -- (s^r,, .-. , 

I), into the payoff functions from the old game. Formally, 

payoff function is 
vi{T,t) = ui[s*{T),t], 

£ • * < = (1 M- One could ^ ^ ^ S S ^ 
^ a u s e a neutral outsider approaches the players an 
following speech: 

I know you already know your types and were^ ^ ^ 
to play the equilibrium s" in the game • ^ ^ ^ 
new game to play—a direct inechanism. t 0 dictate 
of you will si^n a contract that allows D*> t Q ^ 
the action you will take when we lat,e J a b o u t your 
ond, each of you will write down a j vviU ^ each 
type, r„ and submit it to me. 1 I u r ' togetherwith 
player's type report in the new game, ̂  ^ ^ sf/ 

the player's equilibrium strategy rron h a v e ^ e n in 
to compute the action the player \% 
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the equilibrium s* if the player's type really were r,— 
nan finally, I will dictate that each of you 
take the action I have computed for you, and you 
will receive the resulting payoffs (which will depend 
on these actions and your true types). 

We conclude this section (and the proof of the Revelation Prin
ciple) by showing that truth-telling is a Bayesian Xash equilib
rium of this direct mechanism. By claiming to be type r, from 
T„ player i is in effect choosing to take the action S'(TJ) from 
A,. If all the other players tell the truth, then they are in ef
fect playing the strategies (sj s'_: s*). But we argued 
earlier that if they play these strategies, then when i's type is t, 
the best action for i to choose is s"(r,). Thus, if the other play
ers tell the truth, then when r's type is f, the best type to claim 
to be is f,. That is, truth-telling is an equilibrium. More for
mally, it is a Bayesian Nash equilibrium of the static Bayesian 
game {Ti,...,T„;Ti TH;pi p„;x>i v„} for each player i 
to play the truth-telling strategy Tj(tj) = t, for every f, in T,. 

3.4 Further Reading 

Myerson (1985) offers a more detailed introduction to Bayesian 
games, Bayesian Nash equilibrium, and the Revelation Principle. 
See McAfee and McMillan (1987) for a survey of the literature on 
auctions, including an introduction to the winner's curse. Bulow 
and Klemperer (1991) extend the auction model in Section 3.2.B to 
produce an appealing explanation of rational frenzies and crashes 
in (say) housing markets. On employment under asymmetric 
information, see Deere (1988), who analyzes a dynamic model in 
which the worker encounters a sequence of firms over time, each 
with its own privately known marginal product. For applications 
of the Revelation Principle, see Baron and Myerson (1982) on reg
ulating a monopolist with unknown costs, Hart (1983) on implicit 
contracts and involuntary unemployment, and Sappington (1983) 
on agency theory. 
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35 problems 

Section 3.1 

31. What is a static Bayesian game? What is a (pure) strategy in 
a game? What is a (pure-strategy) Bayesian Nash equilibrium 

in such a game? 

Consider a Coumot duopoly operating in a market with in
verse demand P(Q) = a - Q, where Q = ^ + q2 is the aggregate 
quantity on the market. Both firms have total costs c,-(fy-) = ty, 
but demand is uncertain: it is high (a = aH) with probability B 
and low (a = arj with probability 1 -0 . Furthermore, information 
is asymmetric: firm 1 knows whether demand is high or low, but 
firm 2 does not. All of this is common knowledge. The two firms 
simultaneously choose quantities. What are the strategy spaces for 
the two firms7 Make assumptions concerning a^, dr., 6, and c such 
that all equilibrium quantities are positive. What is the Bayesian 
Nash equilibrium of this game? 

Consider the following asymmetric-information model of 
Bertrand duopoly with differentiated products. Demand for firm i 
is liiPupj) =a-pi-br pj. Costs are zero for both firms. The sen
sitivity of firm i's demand to firm j's price is either high or low. 
That is, bi is either bH or bLl where bH > bL > 0. For each firm, 

bH with probability 0 and b, = bL with probability 1 - 9, in
dependent of the realization of \ Each him knows its own b, but 
not its competitor's. All of this is common knowledge. What are 
the action spaces, type spaces, beliefs, and utility functions in this 
game? What are the strategy spaces? What conditions define a 
symmetric pure-strategy Bayesian Nash equilibrium of this game? 
Solve for such an equilibrium. 

Find all the pure-strategy Bayesian Nash equilibria in the 
following static Bayesian game: 

1- Nature determines whether the payoffs are as in Game 1 or 
as in Game 2, each game being equally likely. 

Player 1 learns whether nature has drawn Game 1 or Game 2, 
but player 2 does not. 
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3. Player 1 chooses either T or B; player 2 simultaneously chooses 
either L or R. 

4. Payoffs are given by the game drawn by nature. 

r 
B 

I 

1,1 
0,0 

R 

0,0 

0,0 

T 

B 

I 

0,0 

0,0 

R 

0,0 

2,2 

Gomel Game! 

Section 3.2 

3.5. Recall from Section 1.3 that Matching Pennies (a static game 
of complete information) has no pure-strategy Nash equilibrium 
but has one mixed-strategy Nash equilibrium: each player plays 
H with probability 1/2. 

Player 1 
H 

Player 2 

H T 

1,-1 

- 1 , 1 

- 1 , 1 

1,-1 

Provide a pure-strategy Bayesian Nash equilibrium of a corre
sponding game oi incomplete information such that as the incom
plete information disappears, the players' behavior in the Bayesian 
Nash equilibrium approaches their behavior in the mixed-strategy 
Nash equilibrium in the original game of complete information. 

3.6. Consider a first-price, sealed-bid auction in which the bid
ders' valuations are independently and uniformly distributed on 
[0,1]. Show that if there are n bidders, then the strategy of bid
ding (n-l)/n times one's valuation is a symmetric Bayesian Nash 
equilibrium of this auction. 

3.7. Consider a first-price, sealed-bid auction in which the bid
ders' valuations are independently and identically distributed ac-
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cording to the strictly positive density /(„,.) o n [ 0 l ] c 

symmetric Bayesian Nash equilibrium for the two-bidder case 

3.8. Reinterpret the buyer and seller in the double auction ana 
lyzed in Section 3.2.C as a firm that knows a worker's marginal 
product (m) and a worker who knows his or her outside opportu 
nity {v), respectively, as in Hall and Lazear (1984). In this context 
trade means that the worker is employed by the firm, and the price 
at which the parties trade is the worker's wage, w. If there is trade 
then the firm's payoff is m - w and the worker's is w; if there is 
no trade then the firm's payoff is zero and the worker's is v. 

Suppose that m and v are independent draws from a uniform 
distribution on [0,1], as in the text. For purposes of comparison, 
compute the players' expected payoffs in the linear equilibrium 
of the double auction. Now consider the following two trading 
games as alternatives to the double auction. 

Game I: Before the parties learn their private information, they 
sign a contract specifying that if the worker is employed by the 
firm then the worker 's wage will be w, but also that either side 
can escape from the employment relationship at no cost. After the 
parties learn the values of their respective pieces of private infor
mation, they simultaneously announce either that they Accept the 
wage w or that they Reject that wage. If both announce Accept, 
then trade occurs; otherwise it does not. Given an arbitrary value 
of w from [0,1], what is the Bayesian Nash equilibrium of this 
game? Draw a diagram analogous to Figure 3.2.3 showing the 
type-pairs that trade. Find the value of w that maximizes the sum 
of the players' expected payoffs and compute this maximized sum. 

Game II: Before the parties learn their private information, they 
sign a contract specifying that the following dynamic game will 
be used to determine whether the worker joins the firm and if so 
at what wage. (Strictly speaking, this game belongs in Chapter 4. 
We will anticipate the spirit of Chapter 4 by arguing that this 
game can be solved by combining the lessons of this chapter with 
those of Chapter 2.) After the parties learn the values of their 
respective pieces of private information, the firm chooses a wage 
w to offer the worker, which the worker then accepts or rejects. 
Try to analyze this game using backwards induction, as we did 
for the analogous complete-information games in Section 2.1 .A, as 
follows. Given w and v, what will the worker do? If the nrm 
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anticipates what the worker will do, then given m what will the 
firm do? What is the sum of the players' expected payoffs? 
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Chapter 4 

Dynamic Games of 
Incomplete Information 

In this chapter we introduce yet another equilibrium concept— 
perfect Bayesian equilibrium. This makes four equilibrium concepts 
in four chapters: Nash equilibrium in static games of complete in
formation, subgame-perfect Nash equilibrium in dynamic games 
of complete information, Bayesian Nash equilibrium in static games 
of incomplete information, and perfect Bayesian equilibrium in 
dynamic games of incomplete information. It may seem that we 
invent a brand new equilibrium concept for each class of games 
We study, but in fact these equilibrium concepts are closely re

ed. As we consider progressively richer games, we progres
sively strengthen the equilibrium concept, in order to rule out im-

usible equilibria in the richer games that would survive if we 
eel equilibrium concepts suitable for simpler games. In each 

s e ' t n e stronger equilibrium concept differs from the weaker con-
only for the richer games, not for the simpler games. In partie

s/perfect Bayesian equilibrium is equivalent to Bayesian Nash 
ibrium in static games of incomplete information, equivalent 

Jbgame-perfect Nash equilibrium in dynamic games of com-
c
 e a n d Perfect information (and in many dynamic games of 

! te but imperfect information, including those discussed in 
2-2 and 2.3), and equivalent to Nash equilibrium in static 

pe
S o f c°mplete information. 

(i.e ' BCt ^ aY e s ian equilibrium was invented in order to refine 
e ngthen the requirements of) Bayesian Nash equilibrium 
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ay thai me-perfect Nash equilibrium refine 
Nash equilj 'd subgame perfection 
namic gain lation becau.se Nash equilibrium 

i that threats and promises should be 
tion i" perfei I Bayesian equilibriurr 

I, ompli te information because Ba 
Nash equili i the same flaw. Recall that if the 
pl.i to be a subgame perfeel Nash equilibrium, 

only be a Nash equilibrium for the entire game 
Nash equilibrium in every subgame 

In i it a subgame with the more 
nuation game—the latter can begin at any 

ngleton 01 not), rather than 
i. We then proceed by analogy, 

ii ii a perfeel Bayesian equilibrium, 
n Nash equilibrium for the en-
-i Bayesian Nash equilibrium in 

1.1 we informally introduce the main features of 
a perfect B.i ilibrium. To do so, we temporarily adopt 

•cond (( iry) perspective that reverses the empha-
n equilibrium strengthens the require 

men <ct Nash equilibrium by explicitly analyz-
the pla , as in Bayesian Nash equilibrium. This 

following Harsanyi (1967), we 
a gam' information as though it were a 

gam iion—nature reveals player i's type to 
/ does not know the complete history of 

im concept designed to strengthen 
namic games of incomplete in-

ubga me-perfect Nash equilibrium 
in d\ nplete bul imperfect information. 

the most widely applied class of 
•rmation: ngnalinggame, Stated abstractly-

two players (one with private informa-
and two moves (first a signal sent by ^ 

ken by the uninformed player)-
munication can occur if one type of *"«-' 

I that would be tooex-
nd W i first define perfect Bayes<dn 
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irium foi ign • games and describe the various kir 
>us degrees of communication, 

to < omplete) that can exist. We (hen consider Spence's 
eminal model of job markel signaling, as well as M 

and Majlul 1) model of corporate investment and Vicken/ 
lei of monetary polii 

[n Section 4 ibe other applications of perfect Bayes-
equilibi ium. We begin with (rawford and Sobel's (1982) anal 

heap tall " ' (i.e., signaling games in which all messages 
pplications ol which include presidential veto threats, 

policy announcements by the Federal Reserve, and communica-
(oi "voice") in organizations. In cheap-talk games, the ex-

communication ii determined by the commonality ol 
player.' interests, rather than by the costs of signals for different 
types, We then study Sobel and Takahaslu's (1983) sequential bar-

model, in which a firm musl tolerate a strike in order to 
trate that it cannot afford to pay high wages (cf., Rubin-

complete information bargaining model in Section 2.1.D, 
in wln< I do not occur in equilibrium). Finally, we explore 

i's, Milgrom, Roberts, and Wil >82) landmark account 
role ol reputation in achieving rational cooperation in 

lated Prisoners' Dilemma (cf., the Proposition in Sec-
i 2.3.A concerning the unique subgame-perfect Nash equilib-

i finitely repeated game based on a stage game with a 
unique Nash equilibrium). 

[rt Section 4.4 we return to theory. Although this is thi 
nal section in the hook, it serves more as an indication of what 

i ime next than as the culmination of the material we have 
We describe and illustrate two (success] 

-1 Bayesian equilibrium, the second of which is Cho and 
1987) Intuitive Criterii 

4.1 Introduction to Perfect Bayesian Equilibrium 

the following dynamic game of complete but imp 
First, player 1 chooses among three a< Ho 

and R. If player 1 chooses R then the 
i 2. If player 1 chooses either L or M then player 2 I 

i' was not chosen (but not which of I or M was chosen 
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then chooses between two actions, L' and R', after which the game 
ends. Payoffs are given in the extensive form in Figure 4.1.1. 

Using the normal-form representation of this game given in 
Figure 4.1.2, we see that there are two pure-strategy Nash equilib
ria— {L,V) and {R,R'). To determine whether these Nash equilib
ria are subgame-perfect, we use the extensive-form representation 

tine the game's subgames. Because a subgame is defined to 
begin at a decision node that is a singleton information set (but is 
m>i the game's first decision node), the game in Figure 4.1.1 has 
no subgames. If a game has no subgames then the requirement of 
subgame-perfection (namely, that the players' strategies constitute 
a Nash equilibrium on every subeame) is triviaUysatisfied. Thus, 
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in any game that has no subgames, the definition of subgame-
perfect Nash equilibrium is equivalent to the definition of Nash 
equilibrium, so in Figure 4.1.1 both (L, V) and (K, R') are subgame-
perfect Nash equilibria. Nonetheless, {R,R') clearly depends on 
a noncredible threat: if player 2 gets the move, then playing V 
dominates playing R', so player 1 should not be induced to play 
R by 2's threat to play R' if given the move. 

One way to strengthen the equilibrium concept so as to rule 
out the subgame-perfect Nash equilibrium (R,R') in Figure 4.1.1 
is to impose the following two requirements. 

Requirement 1 At each information set, the player with the move must 
have a belief about which node in the information set has been reached 
by the play of the game. For a nonsingleton information set, a belief 
is a probability distribution over the nodes in the information set; for a 
singleton information set, the player's belief puts probability one on the 
single decision node. 

Requirement 2 Given their beliefs, the players' strategies must be se
quentially rational. That is, at each information set the action taken by 
the player with the move (and the player's subsequent strategy) must be 
optimal given the player's belief at that information set and the other play
ers' subsequent strategies (where a "subsequent strategy" is a complete 
plan of action covering every contingency that might arise after the given 
information set has been reached). 

In Figure 4.1.1, Requirement 1 implies that if the play of the game 
reaches player 2's nonsingleton information set then player 2 must 
have a belief about which node has been reached (or, equivalently, 
about whether player 1 has played L or M). This belief is repre
sented by the probabilities p and 1 - p attached to the relevant 
nodes in the tree, as shown in Figure 4.1.3. 

Given player 2's belief, the expected payoff from playing R' is 
p • 0 + (1 — p) l = 1 — p, while the expected payoff from playing V 
is p • 1 + (1 - p) • 2 = 2 - p. Since 2 - p > 1 - p for any value of p, 
Requirement 2 prevents player 2 from choosing R'. Thus, simply 
requiring that each player have a belief and act optimally given 
this belief suffices to eliminate the implausible equilibrium (R,R') 
in this example. 

Requirements 1 and 2 insist that the players have beliefs and 
act optimally given these beliefs, but not that these beliefs be rea-
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sonable. In order to impose further requirements on the players' 
beliefs, we distinguish between information sets that are on the 
equilibrium path and those that are off the equilibrium path. 

Definition For a given equilibrium in a given extensive-form game, on 
information set is on the equilibrium path if it will be readied with posi
tive probability if the game is played according to the equilibrium strategies, 
and is off the equilibrium path if it is certain not to be reached if the game 
is played according to the equilibrium strategies (where "equilibrium" am 
mean Nash, subgame-perfect, Bayesian, or perfect Bayesian equilibrium). 

Requirement 3 At information sets on the equilibrium path, beliefs are 
determined by Bayes' rule and the players' equilibrium strategies. 

In the subgame-perfect Nash equilibrium (L,L') in Figure 4.1.3-
for example, player 2's belief must be p = 1: given player V$ 
equilibrium strategy (namely, L), player 2 knows which node in 
the information set has been reached. As a second (hypothetical' 
illustration of Requirement 3, svppose that in Figure 4.1.3 there 
were a mixed-strategy equilibrium in which player 1 plays L with 
probability q\, M with probability q2/ and R with probability 1 -
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</i - a2- Then Requirement 3 would force player 2's belief to be 

Requirements 1 through 3 capture the spirit of a perfect Bayes
ian equilibrium. The crucial new feature of this equilibrium con
cept is due to Kreps and Wilson (1982): beliefs are elevated to the 
level of importance of strategies in the definition of equilibrium. 
Formally an equilibrium no longer consists of just a strategy for 
each player but now also includes a belief for each player at each 
information set at which the player has the move.' The advan
tage of making the players' beliefs explicit in this way is that, just 
as in earlier chapters we insisted that the players choose credible 
strategies, we can now also insist that they hold reasonable be
liefs, both on the equilibrium path (in Requirement 3) and off the 
equilibrium path (in Requirement 4, which follows, and in others 
in Section 4.4). 

In simple economic applications—including the signaling game 
in Section 4.2.A and the cheap-talk game in Section 4.3.A—Require
ments 1 through 3 not only capture the spirit but also constitute 
the definition of perfect Bayesian equilibrium. In richer economic 
applications, however, more requirements need to be imposed 
to eliminate implausible equilibria. Different authors have used 
different definitions of perfect Bayesian equilibrium. All defini
tions include Requirements 1 through 3; most also include Re
quirement 4; some impose further requirements.2 In this chapter, 

'Kreps and Wilson formalize this perspective on equilibrium by defining se
quential equilibrium, an equilibrium concept that is equivalent to perfect Bayesian 
equilibrium in many economic applications but in some cases is slightly stronger. 
Sequential equilibrium is more complicated to define and apply than perfect 
Bayesian equilibrium, so most authors now use the latter. Some who do so (im
precisely) refer to the equilibrium concept they apply as sequential equilibrium. 
£reps and Wilson show that in any finite game (i.e., any game with a finite num
ber of players, types, and possible moves) there exists a sequential equilibrium-
this implies that in any finite game there exists a perfect Bayesian equilibrium.' 

To give a sense of the issues not addressed by Requirements 1 through 4 
suppose players 2 and 3 have observed the same events and then both observe a 
devotion from the equilibrium by player 1. In a game of incomplete information 

:h player 1 has private information, should players 2 and 3 hold the same 
oelief about player 1 's type; in a game of complete information, should players 2 
and, 5 hold the same belief about earlier unobserved moves by player 1 ? Similarly 
Jt players 2 and 3 have observed the same events and then player 2 deviates from 
me equilibrium, should player 3 change his or her belief about player I's tvm. 
or about l ' s unobserved moves? Vpe' 
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we take Requirements 1 through 4 to be the definition of perfect 
Bayesian equilibrium.3 

Requirement 4 At information sets off the equilibrium path, beliefs are 
determined by Bayes' rule and the players' equilibrium strategies where 
possible. 

Definition A perfect Bayesian equilibrium consists of strategies and 
beliefs satisfying Requirements 1 through 4. 

It would of course be useful to give a more precise statement 
of Requirement 4—one that avoids the vague instruction "where 
possible." We will do so in each of the economic applications an
alyzed in subsequent sections. For now, we use the three-player 
games in Figures 4.1.4 and 4.1.5 to illustrate and motivate Require
ment 4. (The top, middle, and bottom payoffs are for players 1, 2, 
and 3, respectively.) 

This game has one subgame: it begins at player 2's singleton 
information set. The unique Nash equilibrium in this subgame 
between players 2 and 3 is (L, R'), so the unique subgame-perfect 
Nash equilibrium of the entire game is (D, L,R'). These strategies 
and the belief /? = 1 for player 3 satisfy Requirements 1 through 3. 
They also trivially satisfy Requirement 4, since there is no infor
mation set off this equilibrium path, and so constitute a perfect 
Bayesian equilibrium. 

Now consider the strategies (A,L,L'), together with the be
lief p = 0. These strategies are a Nash equilibrium—no player 
wants to deviate unilaterally. These strategies and belief also sat
isfy Requirements 1 through 3—player 3 has a belief and acts opti
mally given it, and players 1 and 2 act optimally given the subse
quent strategies of the other players. But this Nash equilibrium is 
not subgame-perfect, because the unique Nash equilibrium of the 
game's only subgame is {L,R'). Thus, Requirements 1 through 3 
do not guarantee that the player's strategies are a subgame-perfect 
Nash equilibrium. The problem is that player 3's belief (p = 0) 

3Fudenberg and Tirole (1991) give a formal definition of perfect Bayesian equi
librium for a broad class of dynamic games of incomplete information. Their 
definition addresses issues like those raised in footnote 2. In the simple games 
analyzed in this chapter, however, such issues do not arise, so their definition is 
equivalent to Requirements 1 through 4. Fudenberg and Tirole provide condi
tions under which their perfect Bayesian equilibrium is equivalent to Kreps and 
Wilson's sequential equilibrium. 
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Figure 4.1.4. 

is inconsistent with player 2's strategy (L), but Requirements 1 
through 3 impose no restrictions on 3's belief because 3's infor
mation set is not reached if the game is played according to the 
specified strategies. Requirement 4, however, forces player 3's be
lief to be determined by player 2's strategy: if 2's strategy is I 
then 3's belief must be p = 1; if 2's strategy is R then 3's belief 
must be p = 0. But if 3's belief is p = 1 then Requirement 2 forces 
3's strategy to be R', so the strategies (A,L,L') and the belief p = 0 
do not satisfy Requirements 1 through 4. 

As a second illustration of Requirement 4, suppose Figure 4.1.4 
is modified as shown in Figure 4.1.5: player 2 now has a third pos
sible action, A', which ends the game. (For simplicity, we ignore 
the payoffs in this game.) As before, if player l's equilibrium 
strategy is A then player 3's information set is off the equilib
rium path, but now Requirement 4 may not determine 3's belief 
from 2's strategy. If 2's strategy is A! then Requirement 4 puts 
no restrictions on 3's belief, but if 2's strategy is to play L with 
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Figure 4.1.5. 

probability cj\, R with probability cj2, and A' with probability 1 -
q\ - cjif where c\\ + c\i > 0, then Requirement 4 dictates that 3 s 
belief be p = q\/(qi + qi)-

To conclude this section, we informally relate perfect Bayes-
ian equilibrium to the equilibrium concepts introduced in earlier 
chapters. In a Nash equilibrium, each player's strategy must be a 
best response to the other players' strategies, so no player chooses 
a strictly dominated strategy. In a perfect Bayesian equilibrium, 
Requirements 1 and 2 are equivalent to insisting that no player's 
strategy be strictly dominated beginning at any information set. 
(See Section 4.4 for a formal definition of strict dominance begin
ning at an information set.) Nash and Bayesian Nash equilibrium 
do not share this feature at information sets off the equilibrium 
path; even subgame-perfect Nash equilibrium does not share this 
feature at some information sets off the equilibrium path, such 
as information sets that are not contained in any subgame. Per
fect Bayesian equilibrium closes these loopholes: players cannot 
threaten to play strategies that are strictly dominated beginning at 
any information set off the equilibrium path. 
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As noted earlier, one of the virtues of the perfect Bayesian equi
librium concept is that it makes the players' beliefs explicit and so 
allows us to impose not only Requirements 3 and 4 but also further 
requirements (on beliefs off the equilibrium path). Since perfect 
Bayesian equilibrium prevents player i from playing a strategy 
that is strictly dominated beginning at an information set off the 
equilibrium path, perhaps it is not reasonable for player / to be
lieve that player i would play such a strategy. Because perfect 
Bayesian equilibrium makes the players' beliefs explicit, however, 
such an equilibrium often cannot be constructed by working back
wards through the game tree, as we did to construct a subgame-
perfect Nash equilibrium. Requirement 2 determines a player's 
action at a given information set based in part on the player's be
lief at that information set. If either Requirement 3 or 4 applies 
at this information set, then it determines the player's belief from 
the players' actions higher up the game tree. But Requirement 2 
determines these actions higher up the game tree based in part 
on the players' subsequent strategies, including the action at the 
original information set. This circularity implies that a single pass 
working backwards through the tree (typically) will not suffice to 
compute a perfect Bayesian equilibrium. 

4 2 Signaling Games 

4-2.A Perfect Bayesian Equilibrium in Signaling Games 

A signaling game is a dynamic game of incomplete information 
involving two players: a Sender (S) and a Receiver (R). The 
tuning of the game is as follows: 

1- Nature draws a type r, for the Sender from a set of feasible 
types T - { t i , . . . , t/} according to a probability distribution 
p{ti), where p(r,) > 0 for every i and p(h) + ••• + p(fj) = 1. 

2- The Sender observes f, and then chooses a message m} from 
a set of feasible messages M = {m\,..., m;}. 

3- The Receiver observes ntj (but not t{) and then chooses an 
action ak from a set of feasible actions A ~ {«i,... ,aK}, 

4- Payoffs are given by Us{ti,mj,ak) and UR{tj,mhak). 
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In many applications, the sets T, M, and A are intervals on th 
real line, rather than the finite sets considered here. It is straiel f 
forward to allow the set of feasible messages to depend on th~ 
type nature draws, and the set of feasible actions to depend o 
the message the Sender chooses. 

Signaling models have been applied extremely widely in eco
nomics. To suggest the breadth of possible applications, we briefly 
interpret the formal structure in 1-4 in terms of the three appli c a . 
tions to be analyzed in Sections 4.2.B through 4.2.D. 

In Spence's (1973) model of job-market signaling, the 
Sender is a worker, the Receiver is the market of pros
pective employers, the type is the worker's productive 
ability, the message is the worker's education choice, 
and the action is the wage paid by the market. 

In Myers and Majluf's (1984) model of corporate in
vestment and capital structure, the Sender is a firm 
needing capital to finance a new project, the Receiver 
is a potential investor, the type is the profitability of the 
firm's existing assets, the message is the firm's offer of 
an equity stake in return for financing, and the action 
is the investor's decision about whether to invest. 

In some applications, a signaling game is embedded within a 
richer game. For example, there could be an action by the Re
ceiver before the Sender chooses the message in step 2, and there 
could be an action by the Sender after (or while) the Receiver 
chooses the action in step 3. 

In Vickers's (1986) model of monetary policy, the Fed
eral Reserve has private information about its willing
ness to accept inflation in order to increase employ
ment, but the model is otherwise a two-period version 
of the complete-information repeated game analyzed in 
Section 2.3.E. Thus, the Sender is the Federal Reserve, 
the Receiver is the market of employers, the type is 
the Fed's willingness to accept inflation in order to in
crease employment, the message is the Fed's choice oi 
first-period inflation, and the action is the employers 
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expectation of second-period inflation. The employ
ers' expectation of first-period inflation precedes the 
signaling game, and the Fed's choice of second-period 
inflation follows it. 

For the rest of this section, we analyze the abstract signaling 
game given in 1-4, rather than these applications. Figure 4.2.1 
gives an extensive-form representation (without payoffs) of a sim
ple case: T---- {r1 .f2}/M = {mi,m2} /A = {fli,fl2}/andProb{ti} = 
p. Note that the play of the game does not flow from an initial 
node at the top of the tree to terminal nodes at the bottom, but 
rather from an initial move by nature in the middle of the tree to 
terminal nodes at the left and right edges. 

Recall that (in any game) a player's strategy is a complete 
plan of action—a strategy specifies a feasible action in every con
tingency in which the player might be called upon to act. In a sig
naling game, therefore, a pure strategy for the Sender is a function 
m{ti) specifying which message will be chosen for each type that 
nature might draw, and a pure strategy for the Receiver is a func
tion a(mj) specifying which action will be chosen for each message 

Nature Receiver 

Sender 

Figure 4.2.1-
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that the Sender might send. In the simple game in Figure 4.2.1, 
the Sender and the Receiver both have four pure strategies. 

Sender Strategy I: Play mi if nature draws t\ and play mi if 
nature draws t2. 

Sender Strategy 2: Play mi if nature draws t\ and play m2 if 
nature draws ti. 

Sender Strategy 3: Play mi if nature draws t\ and play mi if 
nature draws 1%. 

Sender Strategy 4: Play mi if nature draws t\ and play mi if 
nature draws t%. 

Receiver Strategy 1: Play a\ if the Sender chooses mi and play 
a-[ if the Sender chooses mi. 

Receiver Strategy 2: Play fli if the Sender chooses mi and play 

ai if the Sender chooses mi-

Receiver Strategy 3: Play a2 if the Sender chooses mi and play 

fli if the Sender chooses mi-

Receiver Strategy 4: Play ai if the Sender chooses mi and play 

ai if the Sender chooses m2. 

We call the Sender's first and fourth strategies pooling because each 
type sends the same message, and the second and third separating 
because each type sends a different message. In a model with more 
than two types there are also partially pooling (or semi-separating) 
strategies in which all the types in a given set of types send the 
same message but different sets of types send different messages. 
In the two-type game in Figure 4.2.1 there are analogous mixed 
strategies, called hybrid strategies, in which (say) t\ plays mi but 
ti randomizes between mi and mi. 

We now translate the informal statements of Requirements 1 
through 3 in Section 4.1 into a formal definition of a perfect Bayes-
ian equilibrium in a signaling game. (The discussion of Figure 4.1.5 
implies that Requirement 4 is vacuous in a signaling game.) To 
keep things simple, we restrict attention to pure strategies; hybrid 
strategies are briefly discussed in the analysis of job-market sig
naling in the next section. We leave it as an exercise to define a 
Bayesian Nash equilibrium in a signaling game; see Problem 4.6. 
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Because the Sender knows the full history of the game when 
choosing a message, this choice occurs at a singleton information 
set. (There is one such information set for each type nature might 
draw.) Thus, Requirement 1 is trivial when applied to the Sender. 
The Receiver, in contrast, chooses an action after observing the 
Sender's message but without knowing the Sender's type, so the 
Receiver's choice occurs at a nonsingleton information set. (There 
is one such information set for each message the Sender might 
choose, and each such information set has one node for each type 
nature might have drawn.) Applying Requirement 1 to the Re 
ceiver yields: 

Signaling Requirement 1 After observing any message ttij from M, the 
Receiver must have a belief about which types could have sent m;. Denote 
this belief by the probability distribution p(tj \ mj), where /*(*,•1 mj) > 0 
for each f, in T, and 

Y,v(ti\mj) = \. 

Given the Sender's message and the Receiver's belief, it is straight
forward to characterize the Receiver's optimal action. Applying 
Requirement 2 to the Receiver therefore yields: 

Signaling Requirement 2R For each mj in M, the Receiver's action 
fl*(m;) must maximize the Receiver's expected utility,given thebeliefn(ti \ 
mj) about which types could have sent mj. That is, a*(mj) solves 

max ^2 A*(*» I "V)LlR(ti,m;,fl]t)-

Requirement 2 also applies to the Sender, but the Sender has com
plete information (and hence a trivial belief) and also moves only 
at the beginning of the game, so Requirement 2 is simply that the 
Sender's strategy be optimal given the Receiver's strategy: 

Signaling Requirement 2S For each t, in T, the Sender's message 
m*{tj) must maximize the Sender's utility, given the Receiver's strategy 
«*{ntj). That is, m*{ti) solves 

max Us{ti,mj,a*{mj)). 
m,eM 
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Finally, given the Sender's strategy m*(r,), let Tj denote the set 
of types that send the message m;. That is, t, is a member of 
the set Tj if m*(f,) = my. If Tj is nonempty then the information 
set corresponding to the message m; is on the equilibrium path; 
otherwise, nij is not sent by any type and so the corresponding 
information set is off the equilibrium path. For messages on the 
equilibrium path, applying Requirement 3 to the Receiver's beliefs 
yields: 

Signaling Requirement 3 For each m; in M, if there exists t, in T such 
that m*{t,) = mj, then the Receiver's belief at the information set corre
sponding to mj must follow from Bayes' rule and the Sender's strategy: 

£ pi**)' 

Definition A pure-strategy perfect Bayesian equilibrium in a signal
ing game is a pair of strategies m*(f,-) and a* {mi) and a belief /z(f,- | ntj) 
satisfying Signaling Requirements (1), (2R), (2S), and (3). 

If the Sender's strategy is pooling or separating then we call the 
equilibrium pooling or separating, respectively. 

We conclude this section by computing the pure-strategy per
fect Bayesian equilibria in the two-type example in Figure 4.2.2. 
Note that each type is equally likely to be drawn by nature; we 
use (p,l - p) and (q,l - q) to denote the Receiver's beliefs at his 
or her two information sets. 

The four possible pure-strategy perfect Bayesian equilibria in 
this two-type, two-message game are: (1) pooling on L; (2) pool
ing on R; (3) separation with ti playing L and f2 playing R; and 
(4) separation with t\ playing R and ti playing L. We analyze 
these possibilities in turn. 

1. Pooling on L: Suppose there is an equilibrium in which 
the Sender's strategy is (L,L), where {m',m") means that type h 
chooses ml and type t2 chooses m". Then the Receiver's infor
mation set corresponding to L is on the equilibrium path, so the 
Receiver's belief (p, 1 - p) at this information set is determined by 
Bayes' rule and the Sender's strategy: p - .5, the prior distribu
tion. Given this belief (or any other belief, in fact), the Receiver's 
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best response following I is to play u, so the Sender types l\ and h 
earn payoffs of 1 and 2, respectively. To determine whether both 
Render types are willing to choose L, we need to specify how the 
Receiver would react to R. If the Receiver's response to R is "/ 
nen t y p e ^ p a y o f f ^ ^ . ^ R .g % ^ ^ ^ ^ [<% payoff 

torn Playing L. But if the Receiver's response to R is d then 
vih

ncl h e a ™ payoffs of zero and 1 (respectively) from playing * 
there?S t h e y e a r n T a n d 2 (respectively) from playing I Thus, i 
the RP

S a n e t l u i l ibrium in which the Sender's strategy is (L, I)th* 
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since the Receiver's best response to L is u for any value of p, so 
there is no equilibrium in which the Sender plays {R. R). 

3. Separation, with f, playing L: If the Sender plays the sepa
rating strategy {L,R) then both of the Receiver's information sets 
are on the equilibrium path, so both beliefs are determined by 
Bayes' rule and the Sender's strategy: p = 1 and q = 0. The 
Receiver's best responses to these beliefs are u and d, respec
tively, so both Sender types earn payoffs of 1. It remains to check 
whether the Sender's strategy is optimal given the Receiver 's strat
egy {u,d). It is not: if type ti deviates by playing L ra ther than R, 
then the Receiver responds with u, earning tj a payoff of 2, which 
exceeds fe's payoff of 1 from playing R. 

4. Separation, with t\ playing R: If the Sender plays the sepa
rating strategy (R. L) then the Receiver's beliefs must be p = 0 and 
q = 1, so the Receiver's best response is (M, U) and both types earn 
payoffs of 2. If t\ were to deviate by playing L, then the Receiver 
would react with u; t\'s payoff would then be 1, so there is no 
incentive for t\ to deviate from playing R. Likewise, if f2 were to 
deviate by playing R, then the Receiver would react with u; f2's 
payoff would then be 1, so there is no incentive for f2 to deviate 
from playing L. Thus, [(R.L). (u. u).p = 0,q = 1] is a separating 
perfect Bayesian equilibrium. 

4.2.B Job-Market Signal ing 

The enormous literature on signaling games begins with Spence's 
(1973) model, which preceded both the widespread use of exten
sive-form games to describe economic problems and the definition 
of equilibrium concepts such as perfect Bayesian equilibrium. In 
this section we restate Spence's model as an extensive-form game 
and then describe some of its perfect Bayesian equilibria; in Sec
tion 4.4 we apply a refinement of perfect Bayesian equilibrium to 
this game. The timing is as follows: 

1. Nature determines a worker's productive ability, 7/, which 
can be either high (H) or low (L). The probability that T) - H 
is q. 

2. The worker learns his or her ability and then chooses a level 
of education, e > 0. 

Signaling Games ^ 

3. Two firms observe the worker 's education (but not the work 
er 's ability) and then simultaneously make wage offers to the 
worker.4 

4. The worker accepts the higher of the two wage offers, flip
ping a coin in case of a tie. Let w denote the wage the worker 
accepts. 

The payoffs are: w - c(r),e) to the worker, where c{r),e) is the cost 
to a worker wi th ability r/ of obtaining education e; y{r),e) -wto 
the firm that employs the worker, where y{r],e) is the output of a 
worker with ability 77 w h o has obtained education e; and zero to 
the firm that does not employ the worker. 

We will focus (to some extent here and more so in Section 4.4) 
on a perfect Bayesian equilibrium in which firms interpret educa
tion as a signal of ability and so offer a higher wage to a worker 
with more educat ion. The irony of Spence's (1973) paper was that 
wages may increase wi th education in this way even if education 
has no effect on product ivi ty (i.e., even if the output of a worker 
with ability n is i/e/), independent of e). Spence's (1974) paper 
generalizes the a rgumen t to allow for the possibility that output 
increases not only wi th ability but also with education; the analo
gous conclusion is then that wages increase with educator,1 more 
than can be explained by the effect of education on productivity. 
We follow this more general approach.5

 } 

It is a well-established fact that wages are high*Mpn ^ 
for workers with more years of schooling (see Mm ^ ^ g 

example). This fact makes it tempting to interpr h t t h i n k 

as years of schooling. In a separating e q u i l i b n u m ^ ^ ^ ^ & 

of a low-ability worker as getting a nign sen" . interpret-
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ln8 e as years of schooling raises d y n a m l C * ] i t v t h a t a firm will 
* the simple g a m e in 1-4, such as the P 0 S S l D " J i n c on e ge (U, 
*ake a wage offer after a worker 's freshman ye 
— — - _ ^ _ , ,K this game slightly 
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\H'e) > y(L,r) for every e). and that education do ^ m a r g i n a l p*°» 
S * T * M > 0 for every „ and every e. ^ f j ^ e ) . 
tlVlty of education for a worker of ability V at educati 
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after a low-ability worker is supposed to have left school but be
fore a high-ability worker is supposed to have done so). In a richer 
game, the worker might choose each year whether to accept the 
best current offer or to return to school for another year. Noldeke 
and van Damme (1990) analyze a richer game along these lines 
and show that: (i) there are many perfect Bayesian equilibria; (ii) 
after applying a refinement that is closely related to the refinement 
we will apply in Section 4.4, only one of these equilibria survives; 
and (iii) this surviving equilibrium is identical to the only equilib
rium of the simple game in 1^1 that survives after we apply the 
refinement in Section 4.4. Thus, we could loosely interpret e as 
years of schooling in the simple game in 1-4, because the results 
are the same in the richer game. 

Instead, we will sidestep these dynamic issues by interpreting 
differences in e as differences in the quality of a student's perfor
mance, not as differences in the duration of the student's school
ing. Thus, the game in 1-4 could apply to a cohort of high school 
graduates (i.e., workers with exactly 12 years of education), or to 
a cohort of college graduates or MBAs. Under this interpretation, 
e measures the number and kind of courses taken and the caliber 
of grades and distinctions earned during an academic program 
of fixed length. Tuition costs (if they exist at all) are then inde
pendent of e, so the cost function c(r),e) measures nonmonetary 
(or psychic) costs: students of lower ability find it more difficult 
to achieve high grades at a given school, and also more difficult 
to achieve the same grades at a more competitive school. Firms' 
use of education as a signal thus reflects the fact that firms hire 
and pay more to the best graduates of a given school and to the 
graduates of the best schools. 

The crucial assumption in Spence's model is that low-ability 
workers find signaling more costly than do high-ability workers. 
More precisely, the marginal cost of education is higher for low-
than for high-ability workers: for every e, 

ce{L,e) >ce{H,e), 

where Q(r/,e) denotes the marginal cost of education for a worker 
of ability r/ at education e. To interpret this assumption, consider 
a worker with education e-[ who is paid wage w\, as depicted in 
Figure 4.2.3, and calculate the increase in wages that would be 
necessary to compensate this worker for an increase in education 
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w 

e, e2 

Figure 4.2.3. 

from t\ to ej- The answer depends on the worker's ability: low-
ability workers find it more difficult to acquire the extra education 
and so require a larger increase in wages (to wy rather than only 
to WH) to compensate them for it. The graphical statement of 
this assumption is that low-ability workers have steeper indiffer
ence curves than do high-ability workers—compare lL to In in the 
figure. 

Spence also assumes that competition among firms will drive 
expected profits to zero. One way to build this assumption into 
our model would be to replace the two firms in stage (3) with a sin
gle player called the market that makes a single wage offer w and 
has the payoff -\y(rj,e) - w}2. (Doing so would make the model 
belong to the class of one-Receiver signaling games defined in the 
previous section.) To maximize its expected payoff, as required by 
Signaling Requirement 2R, the market would offer a wage equal 
to the expected output of a worker with education e, given the 
•market's belief about the worker's ability after observing e: 

w(e) = fx(H | e) • y(H,e) + [1 - n(H | e)]-y{L,e), (4.2.1) 

Wnere fj.(H | e) is the market's assessment of the probability that 
t»e worker's ability is H. The purpose of having two firms bidding 
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against each other in stage (3) is to achieve the same result without 
resorting to a fictitious player called the market. To guarantee that 
the firms will always offer a wage equal to the worker ' s expected 
output, however, we need to impose another assumption: after 
observing education choice e, both firms hold the same belief about 
the worker's ability, again denoted by (x(H \ e). Since Signaling 
Requirement 3 determines the belief that both firms mus t hold 
after observing a choice of e that is on the equilibrium path, our 
assumption really is that the firms also share a common belief after 
observing a choice of e that is off the equilibrium path. Given this 
assumption, it follows that in any perfect Bayesian equilibrium 
the firms both offer the wage w(e) given in (4.2.1)—just as in the 
Bertrand model in Section 1.2.B the firms both offer a price equal 
to the marginal cost of output. Thus, (4.2.1) replaces Signaling 
Requirement 2R for this section's two-Receiver model . 

To prepare for the analysis of the perfect Bayesian equilibria of 
this signaling game, we first consider the complete-information 
analog of the game. That is, we temporarily assume that the 
worker's ability is common knowledge among all the players, 
rather than privately known by the worker. In this case, com
petition between the two firms in stage (3) implies that a worker 
of ability i] with education e earns the wage w(e) = y(r),e). A 
worker with ability r\ therefore chooses e to solve 

max y(7],e)-c(r],e). 

Denote the solution by e*{r)), as shown in Figure 4.2.4, and let 

We now return (permanently) to the assumption that the 
worker's ability is private information. This opens the possibility 
that a low-ability worker could try to masquerade as a high-ability 
worker. Two cases can arise. Figure 4.2.5 depicts the case in which 
it is too expensive for a low-ability worker to acquire education 
e*(H), even if doing so would trick the firms into believing that the 
worker has high ability and so cause them to pay the wage w*(H). 
That is, in Figure 4.2.5, w*{L) - c[L,e*(L)} > w*{H) - c[L,e*(H)\. 

Figure 4.2.6 depicts the opposite case, in which the low-ability 
worker could be said to envy the high-ability worker's complete-
information wage and education level—that is, w* (L) -c[L, e* (L)] < 
w*(H) - c[L,e*{H)}. The latter case is both more realistic and (as 
we will see) more interesting. In a model with more than two 
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w*(H) 

w*(D Y-~ 

y(H,c) 

y(L,e) 

e*{L) e*(H) 

Figure 4.2.6. 

values of the worker's ability, the former case arises only if each 
possible value of ability is sufficiently different from the adjacent 
possible values. If ability is a continuous variable, for example, 
then the latter case applies. 

As described in the previous section, three kinds of perfect 
Bayesian equilibria can exist in this model: pooling, separating, 
and hybrid. Each kind of equilibrium typically exists in profu
sion; we restrict attention to a few examples. In a pooling equilib
rium both worker-types choose a single level of education, say ep. 
Signaling Requirement 3 then implies that the firms' belief after 
observing ep must be the prior belief, n(H \ ep) = q, which in turn 
implies that the wage offered after observing ep must be 

wP=q-y{H,ep) + {l-q)-y(L,ep). (4.2.2) 

To complete the description of a pooling perfect Bayesian equilib
rium, it remains (i) to specify the firms' belief (i{H | e) for out-of-
equilibrium education choices e ^ ep, which then determines the 
rest of the firms' strategy w{e) through (4.2.1), and (ii) to show that 
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both worker-types' best response to the firms' strategy w(e) is to 
choose e = ep. These two steps represent Signaling Requirements 1 
and 2S, respectively; as noted earlier, (4.2.1) replaces Signaling Re
quirement 2R in this two-Receiver model. 

One possibility is that the firms believe that any education level 
other than ep implies that the worker has low ability: n{H \e) = 0 
for all e f- ep. Although this belief may seem strange, nothing 
in the definition of perfect Bayesian equilibrium rules it out, be
cause Requirements 1 through 3 put no restrictions on beliefs off 
the equilibrium path and Requirement 4 is vacuous in a signaling 
game. The refinement we apply in Section 4.4 does restrict the Re
ceiver's belief off the equilibrium path in a signaling game; indeed, 
it rules out the belief analyzed here. In this analysis of pooling 
equilibria we focus on this belief for expositional simplicity, but 
also briefly consider alternative beliefs. 

If the firms' belief is 

* H | « ) - I ° f ° r e ^ (4.2.3) 
q for e = ep 

then (4.2.1) implies that the firms' strategy is 

f y{L,e) iore^ep 
w{e) = I (4.2.4) 

[ wp for e = ep. 

A worker of ability i) therefore chooses e to solve 

max w{e) -cfae). (4.2.5) 

The solution to (4.2.5) is simple: a worker of ability r/ chooses 
either ep or the level of education that maximizes y{L,e) - c(rj,e). 
(The latter is precisely e*(L) for the low-ability worker.) In the 
example depicted in Figure 4.2.7, the former is optimal for both 
worker types: the low-ability worker's indifference curve through 
the point [e*(L),w*(L)] lies below that type's indifference curve 
through {ep,wp), and the high-ability worker's indifference curve 
through the point {ep, iop) lies above the wage function w ~ y(i,e). 
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y(H,e) 

q y(H,e) 

+ (1-cj)y(L,e) 

y(L,e) 

w*(L) 

Figure 4.2.7. 

In summary, given the indifference curves, production functions, 
and value of ep in Figure 4.2.7, the strategy [e(L) = ep,e{H) = ep\ for 
the worker and the belief /z(H | e) in (4.2.3) and the strategy w{e) 
in (4.2.4) for the firms are a pooling perfect Bayesian equilibrium. 

Many other pooling perfect Bayesian equilibria exist in the ex
ample defined by the indifference curves and production functions 
in Figure 4.2.7. Some of these equilibria involve a different edu
cation choice by the worker (i.e., a value of ep other than the one 
in the figure); others involve the same education choice but dif
fer off the equilibrium path. As an example of the former, let e 
denote a level of education between ep and e', where e' in Fig
ure 4.2.7 is the level of education at which the low-ability worker's 
indifference curve through (e*(L),w*(L)) crosses the wage function 
w = q-y{H,e) + {l-q)-y{L,e). If we substitute e for ep in (4.2.3) and 
(4.2.4) then the resulting belief and strategy for the firms together 
with the strategy [e{L) = e, e(H) = e] for the worker are another 
pooling perfect Bayesian equilibrium. As an example of the latter, 
suppose the firms' belief is as in (4.2.3) except that any level of 
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education above e" is taken to mean that the worker is a random 
draw from the ability distribution: 

0 for e < e" except for e = ep 

//(H | e) = <| a iore = ep 

a for e > e", 

in Figure 4.2.7 is the level of education at which the 
high-ability worker's indifference curve through the point [ep,wp) 
crosses the wage function w = a • y(H,e) + (1 - q) • y(L,e). The 
firms' strategy is then 

iv{e) = 

y{L, e) for e < e" except for e = ep 

wp for e = ep 

wp for e > e". 

This belief and strategy for the firms and the strategy (e(L) -
ep,e(H) = ep) for the worker are a third pooling perfect Bayesian 
equilibrium. 

We now turn to separating equilibria. In Figure 4.2.5 (the 
no-envy case), the natural separating perfect Bayesian equilib
rium involves the strategy [e(L) = e*(L),e(H) = e*(H)] for the 
worker. Signaling Requirement 3 then determines the firms' be
lief after observing either of these two education levels (namely, 
H[H | e*{L)] = 0 and n[H \ e'(H)\ = 1), so (4.2.1) implies that 
w[e*(L)] = w*(L) and w[e*(H)] = w*(H). As in the discussion of 
pooling equilibria, to complete the description of this separating 
perfect Bayesian equilibrium it remains: (i) to specify the firms' 
belief fx(H | e) for out-of-equilibrium education choices (i.e., values 
of e other than e*(L) or e*(H)), which then determines the rest of 
the firms' strategy w(e) from (4.2.1); and (ii) to show that the best 
response for a worker of ability /? to the firms' strategy w(e) is to 
choose e~e*{r\). 

One belief that fulfills these conditions is that the worker has 
high ability if * i s a t l e a s t e*^ b u t h a s l o w ability otherwise: 

, „ , x f 0 for^<e*(H) 

( 1 iore>e*(H). K } 
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The firms' strategy is then 

y(L,e) fore<e*(H) 
w(e) = { , (4.2.7) 

| ( y(H, e) for e > e* (H). 

Since e*(H) is the high-ability worker's best response to the wage 
function w = y(H, e), it is also the best response here. As for the 
low-ability worker, e*(L) is that worker's best response when the 
wage function is w = y(L,e), so w*(L) - c[L,e*(L)} is the highest 
payoff that worker can achieve here among all choices of e < e*(H). 
Since the low-ability worker's indifference curves are steeper than 
those of the high-ability worker, w*(H) - c[L,e*(H)\ is the highest 
payoff the low-ability worker can achieve here among all choices 
of e > e*(H). Thus, e*(L) is the low-ability worker's best response 
because w*(L) - c[L,c*(L)} > w*(H) - c[L,e*(H)} in the no-envy 
case. 

We hereafter ignore the no-envy case. As suggested previ
ously, Figure 4.2.6 (the envy case) is more interesting. Now the 
high-ability worker cannot earn the high wage w(e) = y(H, e) sim
ply by choosing the education e*(H) that he or she would choose 
under complete information. Instead, to signal his or her abil
ity the high-ability worker must choose es > e*(H), as shown in 
Figure 4.2.8, because the low-ability worker will mimic any value 
of e between e*(H) and e5 if doing so tricks the firms into be
lieving that the worker has high ability. Formally, the natural 
separating perfect Bayesian equilibrium now involves the strat
egy \e(h) = e*{L),e(H) -• es] for the worker and the equilibrium 
beliefs n[H \ e"(L)} = 0 and fi[H \ es] — 1 and equilibrium wages 
w[e"(L)\ - w*{l) and w(es) - y(H,es) for the firms. This is the only 
equilibrium behavior that survives the refinement we will apply 
in Section 4.4. 

One specification of the firms' out-of-equilibrium beliefs that 
supports this equilibrium behavior is that the worker has high 
ability if e > es but has low ability otherwise: 

//(H | e) = < 
I 1 for e > es. 
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y(H,e) 

y(L,e) 

Figure 4.2.8. 
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As with P ° o l ! n s ; J * S o n choiceby theh 8h- f J ;yw)> a n d 
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e*(l) and es but differ off the equilibrium path. As an example 
of the former, let e be an education level greater than es but suffi
ciently small that the high-ability worker prefers to signal his or 
her ability by choosing e than to be thought to have low ability: 
y(H,e) - c(H,e) is greater than y(L,e) - c(H,e) for every e. If we 
substitute e for es in /.i(H | e) and w(e) accompanying Figure 4.2.8, 
then the resulting belief and strategy for the firms together with 
the strategy [e(L) = e*{L),e(H) = e] for the worker are another sep
arating perfect Bayesian equilibrium. As an example of the latter, 
let the firms' belief for education levels strictly between e*(H) and 
es be strictly positive but sufficiently small that the resulting strat
egy w(e) lies strictly below the low-ability worker's indifference 
curve through the point (<?*(L),w*(L)). 

We conclude this section with a brief discussion of hybrid equi
libria, in which one type chooses one education level with cer
tainty but the other type randomizes between pooling with the 
first type (by choosing the first type's education level) and sepa
rating from the first type (by choosing a different education level). 
We analyze the case in which the low-ability worker randomizes; 
Problem 4.7 treats the complementary case. Suppose the high-
ability worker chooses the education level eh (where the subscript 
"h" connotes hybrid), but the low-abihty worker randomizes be
tween choosing eh (with probability n) and choosing eL (with prob
ability 1-TT). Signaling Requirement 3 (suitably extended to allow 
for mixed strategies) then determines the firms' belief after observ-
^g eh or eL: Bayes' rule yields6 

q+{\-q)n 
and the usual inference after separation yields /z(tf I *L) = & 
lhree observations may help interpret (4.2.8): first, since the high-
ability worker always chooses eh but the low-ability worker does 
so only with probability n, observing eh makes it more likely that 
the worker has high ability so /x(H | eh) > a; second, as * ap
proaches zero the low-ability worker almost never pools with the 
mgh-ability worker so „(H | eh) approaches one; third, as * ap
proaches one the low-ability worker almost always pools with the 
! ! ! 5 ! l ^ r 5 ^ ^ I eh) approaches the prior belief q-

P(ARBUP(R^ fTn°te 2 ta a*!** 3 that Bayes' rule states that PfA\f* 
that p \'AI [ T0JT* (4'2"8)' reState Bayes ' ™le ̂  P(A, B) = P(B I A) • M S° mat r[A | B) = P(B I A) • P(A)/P(B). 
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When the low-ability worker separates from the high-ability 
worker by choosing eL, the belief /i(H | eL) = 0 implies the wage 
w{eL) = y(L,eL). It follows that eL must equal e*(L): the only 
education choice at which the low-ability worker can be induced 
to separate (whether probabilistically as here, or with certainty 
as in the separating equilibria discussed earlier) is that worker's 
complete-information education choice, e*(L). To see why this is 
so, suppose the low-ability worker separates by choosing some 
eL ± e*(L). Such separation yields the payoff y(L,eL) - c(L,eL), 
but choosing e*(L) would yield a payoff of at least y[L,e*(L)] -
c[L,e*(L)] (or more if the firms' belief /z[H | e*(L)} is greater than 
zero), and the definition of e*{L) implies that y[L,e*(L)]~c[L,e*(L)] 
>y(L,e)-c{L,e) for every e ̂  e*(L). Thus, there is no education 
choice eL^e*(l) such that the low-ability worker can be induced 
to separate by choosing eL. 

For the low-ability worker to be willing to randomize between 
separating at e*(L) and pooling at e,„ the wage w(eh) = wh must 
make that worker indifferent between the two: 

w*(L)-c[L,e*(l)) = wh-c(l,eh). (4.2.9) 

For v)h to be an equilibrium wage for the firms to pay, however, 
(4.2.1) and (4.2.8) imply 

For a given value of e,„ if (4.2.9) yields wh < y{H,eh), then (4.2.10) 
determines the unique value of ir consistent with a hybrid equilib
rium in which the low-ability worker randomizes between e*(L) 
and eh, while if wh > y{H,eh), then there does not exist a hybrid 
equilibrium involving e/,. 

Figure 4.2.9 implicitly illustrates the value of TT consistent with 
the indicated value of eh. Given eh/ the wage wh solves (4.2.9), 
so the point {eh,wh) is on the low-ability worker's indifference 
curve through the point [e*{L),w*(l)]. Given wh < y(H,eh), the 
probability r solves ry(H,e,,)+(l-r)y(L,e,,) = wh. This probability 
is the firms' equilibrium belief fi(H \ eh), so (4.2.8) implies TT = 
q{\ - r)/r{\ - q). The figure also illustrates that the constraint 
xoh < y{H,eh) is equivalent to eh < es, where es is the education 
chosen by the high-ability worker in the separating equilibrium 
in Figure 4.2.8. Indeed, as eh approaches es, r approaches one, so 
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w*(L) 

y(H,e) 

ry(H,e) 

+ <l-r)y(L,e) 

qyW,e) 

+ a-q)y(L,e) 

yd, e) 

Figure 4.2.9. 

TT approaches zero. Thus, the separating equilibrium described in 
Figure 4.2.8 is the limit of the hybrid equilibria considered here. 

To complete the description of the hybrid perfect Bayesian 
equilibrium in Figure 4.2.9, let the firms' belief be that the worker 
has low ability if e < eh but otherwise has high ability with prob
ability r and low ability with probability 1 - r. 

n{H\e) = \ ° fore<eh 

{ r for e > e/,. 

The firms' strategy is then 

10(e) = J y ( L , e ) fore<e, , 

I r-y(H,e) + (l-r)-y{L,e) for e > eh. 
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It remains only to check that the worker's strategy (e(L) = eh with 
probability TT, e(L) = e*(L) with probability 1 - TT; e(H) = eh) is a 
best response to the firms' strategy. For the low-ability worker, 
the optimal e < eh is e*(L) and the optimal e > e/, is e\x. For the 
high-ability worker, eh is superior to all alternatives. 

4.2.C Corporate Investment and Capital Structure 

Consider an entrepreneur who has started a company but needs 
outside financing to undertake an attractive new project. The en
trepreneur has private information about the profitability of the 
existing company, but the payoff of the new project cannot be dis
entangled from the payoff of the existing company—all that can be 
observed is the aggregate profit of the firm. (We could allow the 
entrepreneur to have private information about the profitability 
of the new project, too, but this would be an unnecessary compli
cation.) Suppose the entrepreneur offers a potential investor an 
equity stake in the firm in exchange for the necessary financing. 
Under what circumstances will the new project be undertaken, 
and what will the equity stake be? 

To translate this problem into a signaling game, suppose that 
the profit of the existing company can be either high or low. n = I 
°r H, where H > L > 0. To capture the idea that the new project 
is attractive, suppose that the required investment is I, the payoff 
will be R, the potential investor's alternative rate of return is r, 
and R > 1(1 + r). The timing and payoffs of the game are then as 
follows: 

1. Nature determines the profit of the existing company. The 
probability that TT = L is p. 

2. The entrepreneur learns TX and then offers the potential in
vestor an equity stake s, where 0 < s < 1. 

3. The investor observes s (but not n) and then decides either 
to accept or to reject the offer. 

4. If the investor rejects the offer then the investor's p 
1(1+ r) and the entrepreneur's payoff is TT. If the i 
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accepts s then the investor's payoff is s(n + R) and the en. 
trepreneur's is (1 - s)(ir + R)-

Myers and Majluf (1984) analyze a model in this spirit, although 
they consider a large firm (with shareholders and a 

manager) 
rather than an entrepreneur (who is both the manager and the sole 
shareholder). They discuss different assumptions about how the 
shareholders' interests might affect the manager's utility; Dybvig 
and Zender (1991) derive the optimal contract for the shareholders 
to offer the manager. 

This is a very simple signaling game, in two respects: the 
Receiver's set of feasible actions is extremely limited, and the 
Sender's set of feasible signals is larger but still rather ineffec
tive (as we will see). Suppose that after receiving the offer s the 
investor believes that the probability that n = L is q. Then the 
investor will accept s if and only if 

s[qL + (1 - q)H + R] > 1(1 + r). (4-2.11) 

As for the entrepreneur, suppose the profit of the existing company 
js 7T, and consider whether the entrepreneur prefers to receive the 
financing at the cost of an equity stake of s or to forego the project. 
The former is superior if and only if 

s < 
R • • (4.2.12) 

7T + R 

In a pooling perfect Bayesian equilibrium, the investor's belief 
must be q = p after r e c e i v i n g t h e e q u iiibrium offer. Since the 
Participation constraint (4.2.12) is more difficult to satisfy for * -
" than for n = L, combining (4.2.11) and (4.2.12) implies that a 
Pooling equilibrium exists only if 

J(l + r) _R_ (4.2.13) 
pl~+Jl-p)H + R - H + R ' 

P is l C l ° S e G n 0 U g h t 0 z e r o ' W.2.13) holds because R > W +r)" * 
close enough to one, however, then (4.2.13) holds only it 

R-ip + rJfcffi + aS-L. {4214) 
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Intuitively, the difficulty with a pooling equilibrium is that the 
high-profit type must subsidize the low-profit type: setting q = p 
in (4.2.1D yields s > 1(1 4- r)/\pl + (1 - p)H + R], whereas if the 
investor were certain that n = H (i.e., q = 0) then he or she would 
accept the smaller equity stake s > 1(1 +r)/{H + R). The larger eq
uity stake required in a pooling equilibrium is very expensive for 
the high-profit firm—perhaps so expensive as to make the high-
profit firm prefer to forego the new project. Our analysis shows 
that a pooling equilibrium exists if p is close to zero, so that the 
cost of subsidization is small, or if (4.2.14) holds, so that the profit 
from the new project outweighs the cost of subsidization. 

If (4.2.13) fails then a pooling equilibrium does not exist. A sep
arating equilibrium always exists, however. The low-profit type 
offers s = I(l + r)/(L + R), which the investor accepts, and the high-
profit type offers s < 1(1 + r)/(H + R), which the investor rejects. 
In such an equilibrium, investment is inefficiently low: the new 
project is certain to be profitable, but the high-profit type foregoes 
the investment. This equilibrium illustrates the sense in which the 
Sender's set of feasible signals is ineffective: there is no way for 
the high-profit type to distinguish itself; financing terms that are 
attractive to the high-profit type are even more attractive to the 
low-profit type. As Myers and Majluf observe, the forces in this 
model push firms toward either debt or internal sources of funds. 

We conclude by briefly considering the possibility that the en
trepreneur can offer debt as well as equity. Suppose the investor 
accepts the debt contract D. If the entrepreneur does not declare 
bankruptcy then the investor's payoff is D and the entrepreneur's 
is 7r + R - D; if the entrepreneur does declare bankruptcy then the 
investor's payoff is n + R and the entrepreneur's is zero. Since 
L > 0, there is always a pooling equilibrium: both profit-types 
offer the debt contract V - 1(1 + r), which the investor accepts. 
It L were sufficiently negative that R + L < 1(1 + r), however, 
then the low-profit type could not repay this debt so the investor 
would not accept the contract. A similar argument would apply 
if L and H represented expected (rather than certain) profits. Sup
pose the type IT means that the existing company's profit will be 
n + K with probability 1/2 and n - K with probability 1/2. Now if 
I ~ K + R < 1(1 + r) then there is probability 1/2 that the low-profo 
type will not be able to repay the debt D = 1(1 + r) s o t h e ^ . 
will not accept the contract. 
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4.2.D Monetary Policy 

In this section we add private information to a two-period version 
of the repeated monetary-policy game analyzed in Section 2.3.E. 
As in Spence's model, there are many pooling, hybrid, and sepa
rating perfect Bayesian equilibria. Since we discussed such equi
libria in detail in Section 4.2.B, we only sketch the main issues 
here. See Vickers (1986) for the details of a similar two-period 
analysis, and Barro (1986) for a multiperiod reputation model. 

Recall from Section 2.3.E that the monetary authority's one-
period payoff is 

W(TT, 7re) = -C7T2 - [(b - l)y* + d{7r - ire)]2, 

where % is actual inflation, ne is employers ' expectation of infla
tion, and y* is the efficient level of output. For employers, the 
one-period payoff is — (ir — irc)2. In our two-period model, each 
player's payoff is simply the sum of the player 's one-period pay
offs, W(7Ti.7rf) + W(7T2,n

e
2) and - ( ^ - Trf)2 - (TT2 - Trf)2, where TT, 

is actual inflation in period t and -n\ is employers ' expectation (at 
the beginning of period 0 of inflation in period f. 

The parameter c in the payoff function W(n, ire) reflects the 
monetary authority's trade-off between the goals of zero inflation 
and efficient output. In Section 2.3.E this parameter was common 
knowledge. We now assume instead that this parameter is pri
vately known by the monetary authority: c = S or W (for "strong" 
and "weak" at fighting inflation), where S > W > 0. The timing 
of the two-period model is therefore as follows: 

1. Nature draws the monetary authority's type, c. The proba
bility that c — W is p. 

2. Employers form 7rf, their expectation of first-period inflation. 

3. The monetary authority observes n\ and then chooses actual 
first-period inflation, ix\. 

4. Employers observe ix\ (but not c) and then form 7TC
2,

 t r i e i r 

expectation of second-period inflation. 

5. The monetary authority observes -Ke
2 and then chooses ac 

second-period inflation, TX2. 
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As noted in Section 4.2. A, there is a one-period signaling game em
bedded in this two-period monetary-policy game. The Sender's 
message is the monetary authority's first-period choice of infla
tion, 7ri, and the Receiver's action is employers' second-period 
expectation of inflation, x^. Employers' first-period expectation 
of inflation and the monetary authority's second-period choice of 
inflation precede and follow the signaling game, respectively. 

Recall that in the one-period problem (i.e., in the stage game 
of the repeated game analyzed in Section 2.3.E) the monetary au
thority's optimal choice of TT given employers' expectation ire is 

T*M = ^ [ ( l - % * + ^ e ] -

The same argument implies that if the monetary authority's type 
is c then its optimal choice of TT2 given the expectation 7r| is 

[(l-%*+<fcrf]s *£(*!,<:). 
c + d2 

Anticipating this, if employers begin the second period believing 
that the probability that c = W is a, then they will form the expec
tation ir^iq) that maximizes 

- «?br2*(7rf, W) - Trf]2 - (1 - f )M( i*S) - ""I]2. (4.2.15) 

In a pooling equilibrium, both types choose the same first-
period inflation, say TT*, SO employers' first-period expectation 
is 7rf = 7r*. On the equilibrium path, employers begin the sec
ond period believing that the probability that c = W is p and so 
form the expectation 7r|(p). Then the monetary authority of type c 
chooses its optimal second-period inflation given this expectation, 
namely ir^(p),c], thus ending the game. To complete the de
scription of such an equilibrium, it remains (as usual) to define 
the Receiver's out-of-equilibrium beliefs, to compute the associ
ated out-of-equilibrium actions using (4.2.15), and to check that 
these out-of-equilibrium actions do not create an incentive for any 
Sender-type to deviate from the equilibrium. 

' In a separating equilibrium, the two types choose different 
first-period inflation levels, say TTW and TTS, so employers' first-
period expectation is Trf = pixw + (l _ p)^ A f t e r o b s e r v -
employers begin the second period believing that c = W and so 
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form the expectation 7r|(l); likewise, observing TS leads to 7r|(0). 
In equilibrium, the weak type then chooses ^ [ ^ ( 1 ) . W\ and the 
strong type TT2* [nc

2(Q), S), ending the game. To complete the descrip
tion of such an equilibrium it remains not only to specify the Re
ceiver's out-of-equilibrium beliefs and actions and to check that no 
Sender-type has an incentive to deviate, as above, but also to check 
that neither type has an incentive to mimic the other's equilibrium 
behavior. In this game, the weak type might be tempted to 
choose its in the first period, thereby inducing 7^(0) as the em
ployers' second-period expectation, but then choose 7r£pT|(0).W] 
to end the game. That is, even if 7r$ is uncomfortably low for the 
weak type, the ensuing expectation 7r£(0) might be so low that the 
weak type receives a huge payoff from the unanticipated inflation 
^(^(O) ' W] - 7r̂ (0) in the second period. In a separating equilib
rium, the strong type's first-period inflation must be low enough 
that the weak type is not tempted to mimic the strong type, in spite 
of the subsequent benefit from unanticipated second-period infla
tion. For many parameter values, this constraint causes ITS to be 
lower than the inflation level the strong type would choose under 
complete information, just as the high-ability worker overinvests 
in education in a separating equilibrium in Spence's model. 

4.3 Other Applications of Perfect Bayesian 
Equilibrium 

4.3.A Cheap-Talk Games 

Cheap-talk games are analogous to signaling games, but in cheap-
talk games the Sender's messages are just talk—costless, non-
binding, nonverifiable claims. Such talk cannot be informative in 
Spence's signaling game: a worker who simply announced "My 
ability is high" would not be believed. In other contexts, however, 
cheap talk can be informative. As a simple example, consider the 
likely interpretation of the phrase "I ley, look out for that bus!" In 
applications of greater economic interest, Stein (1989) shows that 
policy announcements by the Federal Reserve can be informative 
but cannot be too precise, and Matthews (1989) studies how a 
veto threat by the president can influence which bill gets through 
Congress. In addition to analyzing the effect of cheap talk in a 
fixed environment, one also can ask how to design environments 
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to take advantage of cheap talk. In this vein, Austen-Smith (1990) 
shows that in some settings debate among self-interested legisla
tors improves the social value of the eventual legislation, and Far-
rell and Gibbons (1991) show that in some settings unionization 
improves social welfare (in spite of the employment distortion de
scribed in Section 2.1.C) because it facilitates communication from 
the work force to management. 

Cheap talk cannot be informative in Spence's model because all 
the Sender's types have the same preferences over the Receiver's 
possible actions: all workers prefer higher wages, independent of 
ability. To see why such uniformity of preferences across Sender-
types vitiates cheap talk (both in Spence's model and more gener
ally), suppose there were a pure-strategy equilibrium in which one 
subset ol Sender-types, T\, sends one message, m.\, while another 
subset of types, Ti, sends another message, m^ (Each T, could 
contain only one type, as in a separating equilibrium, or many 
types, as in a partially pooling equilibrium.) In equilibrium, the 
Receiver will interpret w, as coming from T, and so will take the 
optimal action given this belief; denote this action by a,-. Since all 
Sender-types have the same preferences over actions, if one type 
prefers (say) a\ to ai, then all types have this preference and will 
send m\ rather than m-i, thereby destroying the putative equilib
rium. In Spence's model, for example, if one cheap-talk message 
led to a high wage but another cheap-talk message led to a low 
wage, then workers of all ability levels would send the former 
message, so there cannot exist an equilibrium in which cheap talk 
affects wages. 

Thus, for cheap talk to be informative, one necessary condition 
is that different Sender-types have different preferences over the 
Receiver's actions. A second necessary condition, of course, is that 
the Receiver prefer different actions depending on the Sender's 
type. (Both signaling and cheap talk are useless if the Receiver's 
preferences over actions are independent of the Sender's type.) A 
third necessary condition for cheap talk to be informative is that 
the Receiver's preferences over actions not be completely opposed 
to the Sender's. To anticipate a later example, suppose that the 
Receiver prefers low actions when the Sender's type is low and 
_ . .- _ „ . . l i o n HlP> S p n H o r c f.rv-.^. : „ LJ . . I *.- . * * _ «*««* 

tion can o — ~- — ~ .„* m e opposite preference then 
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communication cannot occur because the Sender would like to 
mislead the Receiver. Crawford and Sobel (1982) analyze an ab
stract model that satisfies these three necessary conditions. They 
establish two intuitive results: loosely put, more communication 
can occur through cheap talk when the players' preferences are 
more closely aligned, but perfect communication cannot occur un
less the players' preferences are perfectly aligned. 

Each of the economic applications just described—cheap talk 
by the Fed, veto threats, information transmission in debate, and 
union voice—involves not only a simple cheap-talk game but also 
a more complicated model of an economic environment. Analyz
ing one of these applications would require us to describe not only 
the former game but also the latter model, which would divert at
tention from the basic forces at work in all cheap-talk games. In 
this section, therefore, we depart from the style of the rest of the 
book and analyze only abstract cheap-talk games, leaving the ap
plications as further reading. 

The timing of the simplest cheap-talk game is identical to the 
timing of the simplest signaling game; only the payoffs differ. 

1. Nature draws a type t\ for the Sender from a set of feasible 
types T = {t\,...,ti} according to a probability distribution 
/?(fi), where p(f,) > 0 for every / and p(t\) + 1- p{ti) = 1. 

2. The Sender observes t, and then chooses a message my from 
a set of feasible messages M = {wii,..., wi;}. 

3. The Receiver observes rrij (but not £,) and then chooses an 
action ak from a set of feasible actions A — {a\,..., aK}. 

4. Payoffs are given by Us{tj,ak) and ( J R ^ , , ^ ) . 

The key feature of such a cheap-talk game is that the message 
has no direct effect on either the Sender's or the Receiver's pay
off. The only way the message can matter is through its informa
tion content: by changing the Receiver's belief about the Sender's 
type, a message can change the Receiver's action, and thus indi
rectly affect both players' payoffs. Since the same information can 
be communicated in different languages, different message spaces 
can achieve the same results. The spirit of cheap talk is that any
thing can be said, but formalizing this would require M to be a 
very large set. Instead, we assume that M is (just) rich enough to 
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sav what needs to be said; that is, M~T. For the purposes of this 
section, this assumption is equivalent to allowing anything to be 
said; for the purposes of Section 4.4 (refinements of perfect Bayes
ian equilibrium), however, the assumption must be reconsidered. 

Because the simplest cheap-talk and signaling games have the 
same timing, the definitions of perfect Bayesian equilibrium in the 
two games are identical as well: a pure-strategy perfect Bayesian 
equilibrium in a cheap-talk game is a pair of strategies m*(f,) and 
a*{mj) and a belief ^(r, | mj) satisfying Signaling Requirements (1), 
(2R), (2S), and (3), although the payoff functions UR(tj,mj,ak) and 
Us{ti,mj,ak) in Signaling Requirements (2R) and (2S) are now 
equivalent to U R ^ , , ^ ) and Us(ti,ak), respectively. One difference 
between signaling and cheap-talk games, however, is that in the 
latter a pooling equilibrium always exists. Because messages have 
no direct effect on the Sender's payoff, if the Receiver will ignore 
all messages then pooling is a best response for the Sender; be
cause messages have no direct effect on the Receiver's payoff, if 
the Sender is pooling then a best response for the Receiver is to 
ignore all messages. Formally, let a* denote the Receiver's optimal 
action in a pooling equilibrium; that is, a* solves 

max J]p(ti)UR{ti,ak). 
tt*A t% 

It is a pooling perfect Bayesian equilibrium for the Sender to play 
any pooling strategy, for the Receiver to maintain the prior belief 
p{tj) after all messages (on and off the equilibrium path), and for 
the Receiver to take the action a* after all messages. The interest
ing question in a cheap-talk game therefore is whether nonpooling 
equilibria exist. The two abstract cheap-talk games discussed next 
illustrate separating and partially pooling equilibria, respectively. 

We begin with a two-type, two-action example: T = {tL,tH}, 
Prob(fL) = p, and A = K , « H } - We could use a two-type, two-
message, two-action signaling game analogous to Figure 4.2.1 to 
describe the payoffs in this cheap-talk game, but the payoffs from 
the type-action pair (*/,«*) are independent of which message was 
chosen, so we instead describe the payoffs using Figure 4.3.1. The 
first payoff in each cell is the Sender's and the second the Re
ceiver's, but this figure is not a normal-form game; rather, it sim
ply lists the players' payoffs from each type-action pair. As in 
our earlier discussion of necessary conditions for cheap talk to be 
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Figure 4.3.1. 

informative, we have chosen the Receiver's payoffs so that the 
Receiver prefers the low action {aL) when the Sender's type is 
low (fL) and the high action when the type is high. To illustrate 
the first necessary condition, suppose both Sender-types have the 
same preferences over actions: x > z and y > w, for example, so 
that both types prefer aL to aH. Then both types would like the 
Receiver to believe that t = tL, so the Receiver cannot believe such 
a claim. To illustrate the third necessary condition, suppose the 
players' preferences are completely opposed: z > x and y>w, so 
that the low Sender-type prefers the high action and the high type 
the low action. Then tL would like the Receiver to believe that 
f = tH and tH would like the Receiver to believe that t = tL, so the 
Receiver cannot believe either of these claims. In this two-type, 
two-action game, the only case that satisfies both the first and the 
third necessary conditions is x => z and y < w— the players' inter
ests are perfectly aligned, in the sense that given the Sender's type 
the players agree on which action should be taken. Formally, in a 
separating perfect Bayesian equilibrium in this cheap-talk game, 
the Sender's strategy is [m(tL) = tL,m{tH) = tH], the Receiver's 
beliefs are /z(fL | tL) = 1 and /x(fL | tH) = 0, and the Receiver's 
strategy is \a{tL) = aL,a{tH) = aH\. For these strategies and beliefs 
to be an equilibrium, each Sender-type t, must prefer to announce 
the truth, thereby inducing the action au rather than to lie, thereby 
inducing ar Thus, a separating equilibrium exists if and only if 
x>z and ysro. 

Our second example is a special case of Crawford and Sobel's 
model. Now the type, message, and action spaces are continuous: 
the Sender's type is uniformly distributed between zero and one 
(formally, T = [0,1] and p{t) = 1 for all t in T); the message space 
is the type space (M = T); and the action space is the interval 
from zero to one (A = [0,1]). The Receiver's payoff function| 
UR{t,a) = -{a - t)2 and the Sender's is Us{t,a) = - [ a - ( * + &)!' 
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so when the Sender's type is r, the Receiver's optimal action is 
a = f but the Sender's optimal action is a = t + b. Thus, dif
ferent Sender-types have different preferences over the Receiver's 
actions (more specifically, higher types prefer higher actions), and 
the players' preferences are not completely opposed (more specif
ically, the parameter b > 0 measures the similarity of the players' 
preferences—when b is closer to zero, the players' interests are 
more closely aligned). 

Crawford and Sobel show that all the perfect Bayesian equilib
ria of this model (and of a broad class of related models) are equiv
alent to a partially pooling equilibrium of the following form: the 
type space is divided into the n intervals [0,X\), [x\,x2) [*»-i>l]; 
all the types in a given interval send the same message, but types 
in different intervals send different messages. As noted earlier, 
a pooling equilibrium (n = 1) always exists. We will show that, 
given the value of the preference-similarity parameter b, there is a 
maximum number of intervals (or "steps") that can occur in equi
librium, denoted n*{b), and partially pooling equilibria exist for 
each n = 1,2 ,n*(b). A decrease in b increases n*(b)—in this 
sense, more communication can occur through cheap talk when 
the players' preferences are more closely aligned. Also, n*(b) is 
finite for all b > 0 but approaches infinity as b approaches zero— 
perfect communication cannot occur unless the players' prefer
ences are perfectly aligned. 

We conclude this section by characterizing these partially pool
ing equilibria, starting with a two-step equilibrium (n = 2) as an 
illustration. Suppose all the types in the interval [0, X\) send one 
message while those in [x\,\] send another. After receiving the 
message from the types in [0,*i), the Receiver will believe that 
the Sender's type is uniformly distributed on [0,*i), so the Re
ceiver's optimal action will be .ti/2; likewise, after receiving the 
message from the types in [x\, 1], the Receiver's optimal action will 
be (*i + l)/2. For the types in [0,*i) to be willing to send their 
message, it must be that all these types prefer the action X\j2 to 
the action (*i +1)/2; likewise, all the types above Xy must prefer 
(x, + l)/2to*i/2. 

Because the Sender s preferences are symmetric around his or 
her optimal action, the Sender-type t prefers xl/2 to (*i +l)/2 if the 
midpoint between these two actions exceeds that type's optimal 
action, t + b (as in Figure 4.3.2), but prefers (xt + l)/2 to xx/2 if t + b 
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Figure 4.3.2. 

exceeds the midpoint. Thus, for a two-step equilibrium to exist, 
X] must be the type t whose optimal action t + b exactly equals the 
midpoint between the two actions: 

x, + b=^ 
Xi X\ + 1 

7 + — 
or xi = (1/2) - 2b. Since the type space is T = [0,1], X\ must 
be positive, so a two-step equilibrium exists only if b < 1/4; for 
b > 1/4 the players' preferences are too dissimilar to allow even 
this limited communication. 

To complete the discussion of this two-step equilibrium, we 
address the issue of messages that are off the equilibrium path. 
Crawford and Sobel specify the Sender's (mixed) strategy so that 
no such messages exist: all types t < X] choose a message ran
domly, according to a uniform distribution on [0,*i); all types 
t > x\ choose a message randomly, according to a uniform distri
bution on [x\, 1]. Since we assumed M = T, there are no messages 
that are sure not to be sent in equilibrium, so Signaling Require
ment 3 determines the Receiver's belief after all possible messages: 
the Receiver's belief after observing any message from [0,*i) is 
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that t is uniformly distributed on [0,xi), and the Receiver's be
lief after observing any message from [*i,l] is that t is uniformly 
distributed on [x\,\\. (The use of uniform distributions in the 
Sender's mixed strategy is entirely separate from the assumption 
of a uniform distribution of the Sender's type; the Sender's mixed 
strategy could just as well use any other strictly positive proba
bility density over the indicated intervals.) As an alternative to 
Crawford and Sobel's approach, we could specify a pure strat
egy for the Sender but choose appropriate beliefs for the Receiver 
off the equilibrium path. For example, let the Sender's strategy 
be that all types t < x\ send the message 0 and all types t > X\ 
send the message x\, and let the Receiver's out-of-equilibrium be
lief after observing any message from (0,*i) be that t is uniformly 
distributed on [0,x\), and after observing any message from (x\, 1] 
be that t is uniformly distributed on [*i,l]. 

To characterize an M-step equilibrium, we repeatedly apply the 
following observation from the two-step equilibrium: the upper 
step, [xi,\], is 4b longer than the lower step, [O.xi). This obser
vation follows from the fact that, given the Sender's type (r), the 
Sender's optimal action (f + b) exceeds the Receiver's optimal ac
tion (f) by b. Thus, if two adjacent steps were of equal length, the 
boundary type between the steps (x\ in the two-step equilibrium) 
would strictly prefer to send the message associated with the up
per step; indeed, the types slightly below the boundary would 
also prefer this. The only way to make the boundary type indif
ferent between the two steps (and thereby make the types above 
and below the boundary strictly prefer their respective steps) is to 
make the upper step appropriately longer than the lower step, as 
follows. 

If the step [Xjt_i,X)t) is of length c (i.e., xk - xk-\ = c), then 
the Receiver's optimal action associated with this step—namely, 
(Xk+Xk_i )/2—is {c/2)+b below the optimal action for the boundary 
type xk—namely, xk + b. To make the boundary type xk indifferent 
between the steps (Xjt-i,**) and [xk,xk+i), the Receiver's action 
associated with the latter step must be (c/2) + b above the optimal 
action for xk: 

* * £ * - { * + «-£ + >, 
or 

**+i ~ xk = c + 4b. 
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Thus, each step must be 4b longer than the last. 
In an n-step equilibrium, if the first step is of length d, then 

the second must be of length d + 4b. the third of length d - 8r>, and 
so on. The nth step must end exactly at t — 1, so we must have 

d + (d + 4b) + --- + [d+(n-\)4b] = 1. 

Using the fact that 1 + 2 + •-• + ( « - 1) = n(i 2 we have 

H•<* + «(/! - 1 ) -2fc = 1. 4.3.1 

Given any w such that w(n-l)-2b < 1, the- I valueofdthat 

solves (4.3.1). That is, for any « such that 1) • lb < 1, there 
exists an n-step partially pooling equilibrium, and the length of 
its first step is the value oi d that solves • « the length 
of the first step must be positive the larj >le number of 
steps in such an equilibrium I the lar ilue ol n Mich 
that n{n - 1) • 2b < 1. Applying the quadr i shows that 

is the largest integer less than 

1 + v/l + (2/b) 

Consistent with the derivation oi the two-step equilibrium, n'(b) = 
1 for b > 1/4: no communication is possible if the players prefer
ences are too dissimilar. Also, as claimed earlier, n*(b) decreases 
in b but approaches infinity only as b approaches zero more com
munication can occur through cheap talk when the players' prefer
ences are more closely aligned, but perfect communication cannot 
occur unless the players preferences are perfectly aligned. 

4.3.B Sequential Bargaining u n d e r Asymmetric 
Information 

Consider a firm and a union bargaining over wages. For sim
plicity, assume that employment is fixed. The union's reservation 
wage (i.e., the amount that union members earn if not employed 
by the firm) is w,. The firm's profit, denoted by if, is uniformly dis
tributed on [nL. rrH], but the true value of rr is privately known by 
the firm. Such private information might reflect the firm's supe
rior knowledge concerning new products in the planning stage, for 
example. We simplify the analysis by assuming that wr = nL a 0. 
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The bargaining game lasts at most two periods. In the first 
period, the union makes a wage offer, W\. If the firm accepts 

«tter then the game ends: the union's payoff is W\ and the 
firm's is - - W\. 0 hese payoffs are the present values of the wage 
and (net) profit streams thai accrue to the players over the life of 
the contract i gotiated—typically three years.) If the firm 

is otter then the game proceeds to the second period. 
The union m Ond wage offer, z<'2. If the firm accepts this 

then th i't values of the plavers' payoffs (as measured 
in the first n for the union and <*>(7r - Wi) for the 

ts both discounting and the reduced life of the 
Mining alter the first period It the firm rejects Ihe 

unioi ! offer then the game ends and payoffs are zero for 
both play< \ more realistic model might allow the bargaining 

mtinue until an offer is accepted, or might tone the parties 
t to binding arbitration alter a prolonged strike. Mere we 

lism fai tractabilirj obel and [akahashl I 
and Problem 4 12 far an infinite-horizon analysl 

ning and deriving a perfect Bayesian equilibrium is a bil 
d in this model, but the eventual answer is simple ,in.l 

intuitive We therefore begin by sketching the unique perfeel 
Bay quilibrium ol this game 

• I he union's fust period wage otler is 

• '2 Si. U'l , j ; , TH-

• If the firm's profil 

2-6 

then the firm accepts ifj; otherwise, the firm rejects wj, 

• U its first-period offer is rented, the nnnin updatr , its belief 
about the firm's profit: the union believes that n is uniformly 
distributed on [0, jrj]. 

The union's second-period wage offer (conditional on w* be
ing rejected) is 

• 

« * • 2 = 2(4^Wf» <K 
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• If the firm's profit, IT, exceeds w\ then the firm accepts the 
offer; otherwise, it rejects it. 

Thus, in each period, high-profit firms accept the union's offer 
while low-profit firms reject it, and the union's second-period be
lief reflects the fact that high-profit firms accepted the first-period 
offer. (Note the slight change in usage here: we will refer inter
changeably to one firm with many possible profit types and to 
many firms each with its own profit level.) In equilibrium, low-
profit firms tolerate a one-period strike in order to convince the 
union that they are low-profit and so induce the union to offer a 
lower second-period wage. Firms with very low profits, however, 
find even the lower second-period offer intolerably high and so 
reject it, too. 

We begin our analysis by describing the players' strategies and 
beliefs, after which we define a perfect Bayesian equilibrium. Fig
ure 4.3.3 provides an extensive-form representation of a simplified 
version of the game: there are only two values of IT (TTI and iru), 
and the union has only two possible wage offers (wt and WH)-

In this simplified game, the union has the move at three infor
mation sets, so the union's strategy consists of three wage offers: 
the first-period offer, w\, and two second-period offers, w2 after 
W\ = IVH is rejected and u>2 after W\ = WL is rejected. These three 
moves occur at three nonsingleton information sets, at which the 
union's beliefs are denoted (p, 1 - p), (q, 1 - q), and (r, 1 - r), re
spectively. In the full game (as opposed to the simplified game 
in Figure 4.3.3), a strategy for the union is a first-period offer w\ 
and a second-period offer function w2(wi) that specifies the offer 
Wi to be made after each possible offer w^ is rejected. Each of 
these moves occurs at a nonsingleton information set. There is 
one second-period information set for each different first-period 
wage offer the union might make (so there is a continuum of such 
information sets, rather than two as in Figure 4.3.3). Within both 
the lone first-period and the continuum of second-period infor
mation sets, there is one decision node for each possible value of 
IT (so there is a continuum of such nodes, rather than two as in 
Figure 4.3.3). At each information set, the union's belief is a prob
ability distribution over these nodes. In the full game, we denote 
the union's first-period belief by m{ir), and the union's second-
period belief (after the first-period offer w\ has been rejected) by 
/12MW1). 
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A strategy for the firm involves two decisions (in either the 
simplified or the full game). Let A\(w\ \ TT) equal one if the firm 
would accept the first-period offer w\ when its profit is TT, and 
zero if the firm would reject W\ when its profit is TT. Likewise, 
let A2(w2 | TT,W\) equal one if the firm would accept the second-
period offer w2 when its profit is TT and the first-period offer was 
W\, and zero if the firm would reject w2 under these circumstances. 
A strategy for the firm is a pair of functions [/li(wi | TT), A2{W2 \ 
TT,W\)]. Since the firm has complete information throughout the 
game, its beliefs are trivial. 

The strategies [^1,^2(^1)] and [A\{w\ \ TT),A2(W2 \ n,W\)] and 
the beliefs \H\{TT),H2(TT I ^1)] are a perfect Bayesian equilibrium if 
they satisfy Requirements 2, 3, and 4 given in Section 4.1. (Re
quirement 1 is satisfied by the mere existence of the union's be
liefs.) We will show that there is a unique perfect Bayesian equilib
rium. The simplest step of the argument is to apply Requirement 2 
to the firm's second-period decision A2(iV2 I TT,WI): since this is the 
last move of the game, the optimal decision for the firm is to accept 
W2 if and only if TT > w2; ^1 is irrelevant. Given this part of the 
firm's strategy, it is also straightforward to apply Requirement 2 
to the union's second-period choice of a wage offer: 102 should 
maximize the union's expected payoff, given the union's belief 
\I2{TT I W\) and the firm's subsequent strategy ^2(1^2 I TT,W^I)- The 
tricky part of the argument is to determine the belief /^(TT | U>\), 
as follows. 

We begin by temporarily considering the following one-period 
bargaining problem. (We will later use the results of this problem 
as the solution to the second period of the two-period problem.) In 
the one-period problem, suppose the union believes that the firm's 
profit is uniformly distributed on [0, TT]], where for the moment TT\ 
is arbitrary. If the union offers w then the firm's best response is 
clear: accept w if and only if TT > w. Thus, the union's problem 
can be stated as: 

max w • Prob{firm accepts w] + 0 • Prob{firm rejects w}, 

where Probjfirm accepts w} = (7^ - W)/TT] for the relevant range 
of wage offers (namely, 0 < w < TT\). The optimal wage offer is 
therefore W*{TT\) = TT\/2. 

We now return (permanently) to the two-period problem. We 
show first that, for arbitrary values of wx and w2, if the union offers 
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in the first period and the firm expects the union to offer wi 
in the second period, then all firms with sufficiently high profit 
will accept w\ and all others will reject it. The firm's possible 
payoffs are TT - Wi from accepting w^6{ir - w2) from rejecting w\ 
and accepting w2, and zero from rejecting both offers. The firm 
therefore prefers accepting w\ to accepting w2 if TT-WI > 6{TT-W2), 

or 

TT > 
1—0 

and the firm prefers accepting Wl to rejecting both offers if TT -
Thus, for arbitrary values of wx and w2, firms with 

m a x J T r * ^ , ^ ) , ^ } will accept wi and firms with 
TT < m a x J T r * ^ , ^ ) , ^ } will reject wx. Since Requirement 2 dic
tates that the firm act optimally given the players' subsequent 
strategies, we can derive A\{vo\ \ TT) for an arbitrary value of w\\ 
firms with TT > max{TT*(wi,w2),Wi} will accept w\ and firms with 
TT < max{7r*(w;1,itf2),«;1} will reject w\, where w2 is the union's 
second-period wage offer w2(w\). 

We can now derive ^(TT \ W\), the union's second-period be
lief at the information set reached if the first-period offer w\ is 
rejected. Requirement 4 implies that the correct belief is that IT 
is uniformly distributed on [0, TT{W\)], where TT{WX) is the value 
of TT such that the firm is indifferent between accepting w\ and 
rejecting it but accepting the union's optimal second-period offer 
given this belief—namely w*(ir{u>i)) = n(wi)/2, as computed in 
the one-period problem. To see this, recall that Requirement 4 
dictates that the union's belief be determined by Bayes's rule and 
the firm's strategy. Thus, given the first part of the firm's strat
egy Ai{u>i I TT) just derived, the union's belief must be that the 
types remaining in the second period are uniformly distributed 
on [0 TTII where n = max{7r*(wi,W2),w;i} and w2 is the union's 
second-period wage offer w2(wl). Given this belief, the union's 
optimal second-period offer must be w*(iri) = n/2, which yields 
an implicit equation for ^ as a function of wl: 

71"! = max{7r*(Wi,7Ti/2),Wl}. 

To solve this implicit equation, suppose W\ > ir*(wuiri/2). Then 
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7ri = w\, but this contradicts W\ > ir*(wi,ir\/2). Therefore, w\ < 
7r*(wi,7Ti/2), so TTi = ir*(wi,iri/2), or 

^l(wi) = =—K and w2(wi) = 

We have now reduced the game to a single-period optimiza
tion problem for the union: given the union's first-period wage of
fer, W\, we have specified the firm's optimal first-period response, 
the union's belief entering the second period, the union's opti
mal second-period offer, and the firm's optimal second-period re
sponse. Thus, the union's first-period wage offer should be chosen 
to solve 

max W\ Problfirm accepts vj\} 

+ Swiiwi) • Probjfirm rejects W\ but accepts vo{\ 

+ h • 0 • Probjfirm rejects both W\ and Wj}-

Note well that Prob{firm accepts w\) is not simply the probability 
that 7r exceeds W\) rather, it is the probability that IT exceeds it\{w\): 

Probjfirm accepts Wi} = — - l l ^ U . 

The solution to this optimization problem is w\, given at the be
ginning of the analysis, and ix\ and w^ are then given by IT\{W\) 

and W2(wJ), respectively. 

4.3.C Reputation in the Finitely Repeated Prisoners' 
Dilemma 

In the analysis of finitely repeated games of complete information 
in Section 2.3.A, we showed that if a stage game has a unique 
Nash equilibrium, then any finitely repeated game based on this 
stage game has a unique subgame-perfect Nash equilibrium: the 
Nash equilibrium of the stage game is played in every stage, after 
every history. In contrast to this theoretical result, a great deal of 
experimental evidence suggests that cooperation occurs frequently 
during finitely repeated Prisoners' Dilemmas, especially in stages 
that are not too close to the end; see Axelrod (1981) for references. 
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Kreps, Milgrom, Roberts, and Wilson (1982) show that a reputation 
model offers an explanation of this evidence.7 

The simplest exposition of such a reputation equilibrium in the 
finitely repeated Prisoners' Dilemma involves a new way of mod
eling asymmetric information. Rather than assume that one player 
has private information about his or her payoffs, we will assume 
that the player has private information about his or her feasible 
strategies. In particular, we will assume that with probability p 
the Row player can play only the Tit-for-Tat strategy (which be
gins the repeated game by cooperating and thereafter mimics the 
opponent's previous play), while with probability 1 - p Row can 
play any of the strategies available in the complete-information re
peated game (including Tit-for-Tat). Following common parlance, 
we will call the latter Row-type "rational." The expositional ad
vantage of this formulation follows from the fact that if Row ever 
deviates from the Tit-for-Tat strategy then it becomes common 
knowledge that Row is rational. 

The Tit-for-Tat strategy is simple and appealing. Also, it was 
the winning entry in Axelrod's prisoners' dilemma tournament. 
Nonetheless, some may find it unappealing to assume that a player 
may have only one strategy available, even if it is an attractive 
strategy. At the cost of some expositional simplicity, one could 
instead assume that both Row-types can play any strategy, but 
with probability p Row's payoffs are such that Tit-for-Tat strictly 
dominates every other strategy in the repeated game. (The expo
sition becomes more complicated under this assumption because 
a deviation from Tit-for-Tat does not make it common knowledge 
that Row is rational.) Such payoffs differ from those typically as
sumed in repeated games: to make it optimal to mimic the Column 
player's previous play, Row's payoffs in one stage must depend 
on Column's move in the previous stage. As a third possibility 
(again at the expense of expositional simplicity), one could allow 
a player to have private information about his or her stage-game 
payoffs, but insist that the payoff in a stage depend only on the 

7We showed in Section 2.3.B that cooperation can occur in the infinitely re
peated Prisoners' Dilemma. Some authors refer to such an equilibrium as a 
"reputation" equilibrium, even though both players' payoffs and opportunities 
are common knowledge. For clarity, one might instead describe such an equi
librium as based on "threats and promises," reserving the term "reputation" for 
games where at least one player has something to learn about another, as in this 
section. 
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moves in that stage, and that the total payoff for the repeated 
game be the sum of the payoffs in the stage games. In particular, 
one could assume that with probability p Row's best response to 
cooperation is cooperation. Kreps, Milgrom, Roberts, and Wilson 
(hereafter KMRW) show that one-sided asymmetric information 
of this kind is not sufficient to produce cooperation in equilib
rium; rather, finking occurs in every stage, just as under complete 
information. They also show, however, that if there is two-sided 
asymmetric information of this kind (i.e., if there is also probabil
ity q that Column's best response to cooperation is cooperation) 
then there can exist an equilibrium in which both players cooper
ate until the last few stages of the game. 

To reiterate, we will assume that with probability p Row can 
play only the Tit-for-Tat strategy. The spirit of KMRW's analysis 
is that even if p is very small (i.e., even if Column has only a tiny 
suspicion that Row might not be rational), this uncertainty can 
have a big effect, in the following sense. KMRW show that there 
is an upper bound on the number of stages in which either player 
finks in equilibrium. This upper bound depends on p and on the 
stage-game payoffs but not on the number of stages in the re
peated game. Thus, in any equilibrium of a long enough repeated 
game, the fraction of stages in which both players cooperate is 
large. (KMRW state their result for sequential equilibria, but their 
arguments also apply to perfect Bayesian equilibria.) Two key 
steps in KMRW's argument are: (i) if Row ever deviates from Tit-
for-Tat then it becomes common knowledge that Row is rational, 
so neither player cooperates thereafter, so the rational Row has an 
incentive to mimic Tit-for-Tat; and (ii) given an assumption on the 
stage-game payoffs to be imposed below, Column's best response 
against Tit-for-Tat would be to cooperate until the last stage of the 
game. 

To provide a simple look at the forces at work in KMRW's 
model, we will consider the complement of their analysis: rather 
than assume that p is small and analyze long repeated games, we 
will assume that p is large enough that there exists an equilibrium 
in which both players cooperate in all but the last two stages of 
a short repeated game. We begin with the two-period case. The 
timing is: 

1. Nature draws a type for the Row player. With probability ?> 
Row has only the Tit-for-Tat strategy available; with proba-
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bility 1 - p, Row can play any strategy. Row learns his or 
her type, but Column does not learn Row's type. 

2. Row and Column play the Prisoners' Dilemma. The players' 
choices in this stage game become common knowledge. 

3. Row and Column play the Prisoners' Dilemma for a second 
and last time. 

4. Payoffs are received. The payoffs to the rational Row and 
to Column are the (undiscounted) sums of their stage-game 
payoffs. The stage game is given in Figure 4.3.4. 

To make this stage game a Prisoners' Dilemma, we assume that 
a > \ and b < 0. KMRW also assume that a + b < 2, so that (as 
claimed in (ii) above) Column's best response against Tit-for-Tat 
would be to cooperate until the last stage of the game, rather than 
to alternate between cooperating and finking. 

Column 

Cooperate Fink 
r~ 

Cooperate 
Row 

Fink 

Figure 4.3.4. 

As in the last period of a finitely repeated Prisoners' Dilemma 
under complete information, finking (F) strictly dominates coop
erating (C) in the last stage of this two-period game of incomplete 
information, both for the rational Row and for Column. Since 
Column will surely fink in the last stage, there is no reason for 
the rational Row to cooperate in the first stage. Finally, Tit-for-Tat 
begins the game by cooperating. Thus, the only move to be deter
mined is Column's first-period move (X), which is then mimicked 
by Tit-for-Tat in the second period, as shown in the equilibrium 
path in Figure 4.3.5. 

By choosing X = C, Column receives the expected payoff p i + 
(1 _ p) • b in the first period and pa in the second period. (Since 
Tit-for-Tat and the rational Row choose different moves in the first 
period, Column will begin the second period knowing whether 

1,1 

a,b 

b,a 

0,0 
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Tit-for-Tat 

Rational Row 

Column 

f = l 

C 

F 

X 

f = 2 

X 

F 

F 

Figure 4.3.5. 

Tit-for-Tat 

Rational Row 

Column 

t = \ 

C 

C 

C 

f = 2 

C 

F 

C 

f = 3 

C 

F 

F 

Figure 4.3.6. 

Row is Tit-for-Tat or rational. The expected second-period payoff 
pa reflects Column's uncertainty about Row's type when deciding 
whether to cooperate or fink in the first period.) By choosing 
X = F, in contrast, Column receives p • a in the first period and 
zero in the second. Thus, Column will cooperate in the first period 
provided that 

p + ( l - p ) b > 0 . (4.3.2) 

We hereafter assume that (4.3.2) holds. 
Now consider the three-period case. Given (4.3.2), if Column 

and the rational Row both cooperate in the first period then the 
equilibrium path for the second and third periods will be given by 
Figure 4.3.5, with X = C and the periods relabeled. We will derive 
sufficient conditions for Column and the rational Row to cooperate 
in the first period, as shown in the three-period equilibrium path 
in Figure 4.3.6. 

In this equilibrium, the payoff to the rational Row is 1 + a and 
the expected payoff to Column is 1 +p+(1 -p)b+pa. If the rational 
Row finks in the first period then it becomes common knowledge 
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Tit-for-Tat 

Rational Row 

Column 

t = \ 

C 

C 

F 

f = 2 

F 

F 

F 

t = 3 

F 

F 

F 

Figure 4.3.7. 

that Row is rational, so both players fink in the second and third 
periods. Thus, the total payoff to the rational Row from finking 
in the first period is a, which is less than the equilibrium payoff 
of I + a, so the rational Row has no incentive to deviate from the 
strategy implicit in Figure 4.3.6. 

We next consider whether Column has an incentive to deviate. 
If Column finks in the first period then Tit-for-Tat will fink in 
the second period, and the rational Row will fink in the second 
period because Column is sure to fink in the last period. Having 
finked in the first period, Column must then decide whether to 
fink or cooperate in the second period. If Column finks in the 
second period, then Tit-for-Tat will fink in the third period, so 
play will be as shown in Figure 4.3.7. Column's payoff from this 
deviation is a, which is less than Column's equilibrium expected 
payoff provided that 

l + p + (l -p)b + pa >a. 

Given (4.3.2), a sufficient condition for Column not to play this 
deviation is 

l+pa>a- (4.3.3) 

Alternatively, Column could deviate by finking in the first pe
riod but cooperating in the second, in which case Tit-for-Tat would 
cooperate in the third period, so play would be as shown in Fig
ure 4.3.8. Column's expected payoff from this deviation is a+b+pa, 
which is less than Column's equilibrium expected payoff provided 
that 

1 + p + (1 - p)b + pa > a + b + pa. 
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Tit-for-Tat 

Rational Row 

Column 

t = 1 t = 2 f = 3 

C F C 

C F F 

F C F 

Figure 4.3.8. 

a = l/a-p) 

b=-p/(l-p) 
a + b = l 

Figure 4.3.9. 

Given (4.3.2), a sufficient condition for Column not to play this 
deviation is 

fl + fc<l. (4.3.4) 

We have now shown that if (4.3.2), (4.3.3), and (4.3.4) hold then 
the play described in Figure 4.3.6 is the equilibrium path of a per
fect Bayesian equilibrium of the three-period Prisoners' Dilemma. 
For a given value of p, the payoffs a and b satisfy these three in
equalities if they belong to the shaded region of Figure 4.3.9. As p 
approaches zero, this shaded region vanishes, consistent with the 
earlier observation that in this section we analyze equilibrium co
operation in short games with high values of p, whereas KMRW 

Other Applications of Perfect Bayesian Equilibrium 231 

focus on long games with low values of p. On the other hand, 
if p is high enough to support cooperation in a short game, it 
certainly is high enough to do so in a long game. Formally, if 
a, b, and p satisfy (4.3.2), (4.3.3), and (4.3.4), then for any finite 
T > 3 there exists a perfect Bayesian equilibrium in the T-period 
repeated game in which the rational Row and Column both co
operate until period T - 2, after which periods T - 1 and T are as 
described in Figure 4.3.5. See Appendix 4.3.C for a proof of this 
claim. 

Appendix 4.3.C 

For brevity, we will refer to a perfect Bayesian equilibrium of a 
T-period repeated Prisoners' Dilemma as a cooperative equilibrium 
if the rational Row and Column both cooperate until period T - 2, 
after which periods T - 1 and T are as described in Figure 4.3.5. 
We will show that if a, b, and p satisfy (4.3.2), (4.3.3), and (4.3.4), 
then there exists a cooperative equilibrium for every finite T > 3. 
We argue by induction: given that for each r = 2,3, . . , , T - 1 there 
exists a cooperative equilibrium in the r-period game, we show 
there exists a cooperative equilibrium in the T-period game. 

We first show that the rational Row has no incentive to deviate 
from a cooperative equilibrium in the T-period game. If Row 
were to fink in any period t < T - 1, it would become common 
knowledge that Row is rational, so Row would receive a payoff 
of a in period t and zero in each period thereafter. But Row's 
equilibrium payoff is one in periods t through T - 2 and a in 
period T - 1, or (T - t -1) + a, so finking is not profitable for any 
t < T - 1. The argument concerning Figure 4.3.5 implies that the 
rational Row has no incentive to deviate in periods T - 1 or T. 

We next show that Column has no incentive to deviate. The 
argument concerning Figure 4.3.5 implies that Column has no in
centive to deviate by cooperating until period T - 2 and then fink
ing in period T - 1; the argument concerning Figure 4.3.6 implies 
that Column has no incentive to deviate by cooperating until pe
riod T - 3 and then finking in period T - 2. We therefore need 
to show that Column has no incentive to deviate by cooperating 
until period t -1 and then finking in period t, where 1 < t < T - 3. 

If Column finks in period t, Tit-for-Tat will Hnk in period 
t + 1, so the rational Row also will fink in period t + 1 (because 



232 DYNAMIC GAMES OF INCOMPLETE INFORMATION 

linking strictly dominates cooperating in the t + ls/ stage gam 
after which finking from t + 2 to T yields a payoff of at least ze * 
whereas cooperating at t + 1 would make it common knowledge 
that Row is rational, resulting in a payoff of exactly zero from 
t + 2 to T). Since Tit-for-Tat and the rational Row both cooperate 
until period f and then both fink in period t + l, Column's belief 
at the beginning of period t + 2 is that the probability that Row 
is Tit-for-Tat is p. Therefore, if Column cooperates in period t + i 
then the continuation game beginning with period t + 2 will be 
identical to a r-period game with r = T - ( f + 2) + l . By the induc
tion hypothesis, a cooperative equilibrium exists in this r-period 
continuation game; assume it is played. Then Column's payoff in 
periods t through T from finking in period t and cooperating in 
period t + 1 is 

a + b + [T - (f + 2) - 1] + p + (1 - p)b + pa, 

which is less than Column's equilibrium payoff in periods t 
through T, 

2 + [T - (f + 2) - 1] + p + (1 - p)b + pa. (4.3.5) 

We have so far shown that Column has no incentive to deviate 
by cooperating until period r - 1, finking in period t, and then 
cooperating in period f+ 1, given that the cooperative equilibrium 
will be played in the continuation game beginning with period 
t + 2. More generally, Column could cooperate until period t - 1, 
fink in periods t through t + s, and then cooperate in period t + 
s + 1. Three cases are trivial: (1) if t + s == T (i.e., Column never 
cooperates after finking at t) then Column's payoff is a in period 
t and zero thereafter, which is less than (4.3.5); (2) if r + s +1 = T 
then Column's payoff from f through T is a + b, which is worse 
than in (1); and (3) if t + s + 1 = T - 1 then Column's payoff 
from t through T is a + b + pa, which is less than (4.3.5). It remains 
to consider values of s such that t + s 4- 1 < T -- 1. As in the 
case of s = 0 above, there exists a cooperative equilibrium in the 
continuation game beginning in period t+s+2; assume it is played. 
Then Column's payoff in periods t through T from playing this 
deviation is 

a + b + [T - (t + s + 2) - 1] + p + (1 - p)b + Va^ 

which is again less than (4.3.5). 
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4.4 Refinements of Perfect Bayesian Equilibrium 

In Section 4.1 we defined a perfect Bayesian equilibrium to be 
strategies and beliefs satisfying Requirements 1 through 4, and 
we observed that in such an equilibrium no player's strategy can 
be strictly dominated beginning at any information set. We now 
consider two further requirements (on beliefs off the equilibrium 
path), the first of which formalizes the following idea: since per
fect Bayesian equilibrium prevents player i from playing a strategy 
that is strictly dominated beginning at any information set, it is 
not reasonable for player ; to believe that i would play such a 

strategy. 
To make this idea more concrete, consider the game in Fig

ure 4.4.1. There are two pure-strategy perfect Bayesian equilibria: 
(L. V. p = 1), and (R, R',p < 1/2).8 The key feature oi this example 

Figure 4.4.1-

strategy "»* extensive form, equilibrium path, so i h b u t 

du-utes that p restriction on p. ™ ^ ^ H 
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is that M is a strictly dominated strategy for player 1: the payoff 
of 2 from R exceeds both of the payoffs that player 1 could receive 
from playing M—0 and 1. Thus, it is not reasonable for player 2 to 
believe that 1 might have played M; formally, it is not reasonable 
for 1 - p to be positive, so p must equal one. If the belief 1 - p > Q 
is not reasonable, then neither is the perfect Bayesian equilibrium 
(R,R',p < 1/2), leaving (L.L'.p = 1) as the only perfect Bayesian 
equilibrium satisfying this requirement. 

Two other features of this example deserve brief mention. First, 
although M is strictly dominated, L is not. If L were strictly dom
inated (as would be the case if player l ' s payoff of 3 were, say, 
3/2) then the same argument would imply that it is not reasonable 
for p to be positive, implying that p must be zero, but this would 
contradict the earlier result that p must be one. In such a case, 
this requirement would not restrict player 2's out-of-equilibrium 
beliefs; see the formal definition below. 

Second, the example does not precisely illustrate the require
ment described initially, because M is not just strictly dominated 
beginning at an information set but also strictly dominated. To see 
the difference, recall from Section 1.1 .B that the strategy s'{ is strictly 
dominated if there exists another strategy s, such that, for each pos
sible combination of the other players' strategies, i's payoff from 
playing s, is strictly greater than the payoff from playing s-. Now 
consider an expanded version of the game in Figure 4.4.1, in which 
player 2 has a move preceding l 's move in the figure, and has two 
choices at this initial move: either end the game or give the move 
to 1 at l's information set in the figure. In this expanded game, M 
is still strictly dominated beginning at l 's information set, but M 
is not strictly dominated because if 2 ends the game at the initial 
node then L, M, and R all yield the same payoff. 

Since M is strictly dominated in Figure 4.4.1, it is certainly not 
reasonable for player 2 to believe that 1 might have played M, but 
strict dominance is too strong a test, and hence yields too weak a 
requirement. (Since more strategies are strictly dominated begin
ning at an information set than are strictly dominated, requiring 
that; not believe that /' might have played one of the former strate
gies puts more restrictions on ;'s beliefs than would requiring that 
;' not believe that i might have played one of the latter strate
gies.) In what follows, we adhere to the requirement as originally 
stated: player ; should not believe that player i might have played 
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a strategy that is strictly dominated beginning at any information 
set. We now state this requirement formally. 

Definition Consider an information set at which player i has the move. 
The strategy sj is strictly dominated beginning at this information set 
if there exists another strategy s, such that, for every belief that i could hold 
at the given information set, and for each possible combination of the other 
players' subsequent strategies (where a "subsequent strategy" is a complete 
plan of action covering every contingency that might arise after the given 
information set has been reached), i's expected payoff from taking the action 
specified by s, at the given information set and playing the subsequent 
strategy specified by s, is strictly greater than the expected payoff from 
taking the action and playing the subsequent strategy specified by s{. 

Requirement 5 If possible, each player's beliefs off the equilibrium path 
should place zero probability on nodes that are reached only if another player 
plays a strategy that is strictly dominated beginning at some information 
set. 

The qualification "If possible" in Requirement 5 covers the case 
that would arise in Figure 4.4.1 if R dominated both M and L, 
as would occur if player l's payoff of 3 were 3/2. In such a 
case, Requirement 1 dictates that player 2 have a belief, but it is 
not possible for this belief to place zero probability on the nodes 
following both M and L, so Requirement 5 would not apply. 

As a second illustration of Requirement 5, consider the signal
ing game in Figure 4.4.2. As in Section 4.2.A, the Sender strategy 
{m',m") means that type t\ chooses message m! and type f2 chooses 
m", and the Receiver strategy {a',a") means that the Receiver 
chooses action a' following L and a" following R, It is straightfor
ward to check that the strategies and beliefs [{1,1), {u,d),p = .5,q] 
constitute a pooling perfect Bayesian equilibrium for any q > 1/2. 
The key feature of this signaling game, however, is that it makes 
no sense for t\ to play R. Formally, the Sender's strategies (R, L) 
and (R,R)—that is, the strategies in which t\ plays R—are strictly 
dominated beginning at the Sender's information set correspond
ing to fi.9 Thus, the fi-node in the Receiver's information set fol
lowing R can be reached only if the Sender plays a strategy that is 

'Since the Sender's information set corresponding to t\ is a singleton infor
mation set, the Sender's beliefs play no role in the definition of strict dominance 
beginning at this information set. Showing that (R,L) and (R,R) are strictly 
dominated beginning at this information set then amounts to exhibiting an alter-
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Figure 4.4.2. 

strictly dominated beginning at an information set. Furthermore, 
the ^-node in the Receiver's information set following R can be 
reached by a strategy that is not strictly dominated beginning at 
an information set, namely (L,R). Requirement 5 therefore dic
tates that a = 0. Since [{L,L), (u,d),p = .5,a] is a perfect Bayesian 
equilibrium only if a > 1/2, such an equilibrium cannot satisfy 
Requirement 5. 

An equivalent way to impose Requirement 5 on the perfect 
Bayesian equilibria of the signaling game defined in Section 4.2.A 
is as follows. 

Definition In a signaling game, the message m] from M is dominated 
for type tjfrom T if there exists another message my from M such that ti's 
lowest possible payoff from m;< is greater than t,'s highest possible payoff 
from my 

min Us(ti,my,ak) > max Us{ti,m;,ak). 
akEA 

native strategy for the Sender that yields a higher payoff for I] for each strategy 
the Receiver could play. (L,R) is such a strategy: it yields at worst 2 for hi 
whereas (R,L) and (R,R) yield at best 1. 
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Signaling Requirement 5 If the information set following nij is off the 
equilibrium path and ntj is dominated for type t, then (if possible) the 
Receiver's belief /A(£, | mj) should place zero probability on type t,. (This 
is possible provided mj is not dominated for all the types in T.) 

In the game in Figure 4.4.2, the separating perfect Bayesian equilib
rium [(L,R), (u,u),p = l,q = 0] satisfies Signaling Requirement 5 
trivially (because there are no information sets off this equilibrium 
path). As an example of an equilibrium that satisfies Signaling 
Requirement 5 nontrivially, suppose that the Receiver's payoffs 
when type ti plays R are reversed: 1 from playing d and 0 from u, 
rather than 0 and 1 as in Figure 4.4.2. Now [(L,L), (K.d),p = -5,q] 
is a pooling perfect Bayesian equilibrium for any value of q, so 
[(L,L).(w,d),p = .5,9 — 0] is a pooling perfect Bayesian equilib
rium that satisfies Signaling Requirement 5. 

In some games, there are perfect Bayesian equilibria that seem 
unreasonable but nonetheless satisfy Requirement 5. One of the 
most active areas of recent research in game theory has concerned 
the twin questions of (i) when a perfect Bayesian equilibrium is 
unreasonable and (ii) what further requirement can be added to 
the definition of equilibrium to eliminate such unreasonable per
fect Bayesian equilibria. Cho and Kreps (1987) made an early and 
influential contribution to this area. We conclude this section by 
discussing three aspects of their paper: (1) the "Beer and Quiche" 
signaling game, which illustrates that unreasonable perfect Bayes
ian equilibria can satisfy Signaling Requirement 5; (2) a stronger 
(but by no means the strongest possible) version of Signaling Re
quirement 5, called the Intuitive Criterion; and (3) the application 
of the Intuitive Criterion to Spence's job-market signaling game. 

In the "Beer and Quiche" signaling game, the Sender is one of 
two types: t\ - "wimpy" (with probability .1) and ti - "surly" 
(with probability .9). The Sender's message is the choice of whether 
to have beer or quiche for breakfast; the Receiver's action is the 
choice of whether or not to duel with the Sender. The qualitative 
features of the payoffs are that the wimpy type would prefer to 
have quiche for breakfast, the surly type would prefer to have 
beer, both types would prefer not to duel with the Receiver (and 
care about this more than about which breakfast they have), and 
the Receiver would prefer to duel with the wimpy type but not 
to duel with the surly type. (Thus, with more conventional labels 
for the types, messages, and actions, this game could be a model 
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Figure 4.4.3. 

of entry deterrence, much like Milgrom and Roberts [1982].) In 
the extensive-form representation in Figure 4.4.3, the payoff from 
having the preferred breakfast is 1 for both Sender types, the ad
ditional payoff from avoiding a duel is 2 for both Sender types, 
and the payoff from a duel with the wimpy (respectively, surly) 
type is 1 (respectively, -1) for the Receiver; all other payoffs are 

zero. 
In this game, [(Quiche, Quiche), (not, duel), p = .1 , q] is a pool

ing perfect Bayesian equilibrium for any q > 1/2. Furthermore, 
this equilibrium satisfies Signaling Requirement 5, because Beer is 
not dominated for either Sender type. In particular, the wimpy 
type is not guaranteed to do better by having Quiche (at worst 
a payoff of 1) than by having Beer (at best a payoff of 2). On 
the other hand, the Receiver's belief off the equilibrium path does 
seem suspicious: if the Receiver unexpectedly observes Beer then 
the Receiver concludes that the Sender is at least as likely to be 
wimpy as surly (i.e., q > 1/2), even though (a) the wimpy type 
cannot possibly improve on the equilibrium payoff of 3 by having 
Beer rather than Quiche, while (b) the surly type could improve 
on the equilibrium payoff of 2, by receiving the payoff of 3 that 
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would follow if the Receiver held a belief q < 1/2. Given (a) and 
(b), one might expect the surly type to choose Beer and then make 
the following speech; 

Seeing me choose Beer should convince you that I am 
the surly type: choosing Beer could not possibly have 
improved the lot of the wimpy type, by (a); and if 
choosing Beer will convince you that I am the surly 
type then doing so will improve my lot, by (b). 

If such a speech is believed, it dictates that q = 0, which is incom
patible with this pooling perfect Bayesian equilibrium. 

We can generalize this argument to the class of signaling games 
defined in Section 4.2.A; this yields Signaling Requirement 6. 

Definition Given a perfect Bayesian equilibrium in a signaling game, 
the message mj from M is equilibrium-dominated for type f, from T if 
tjs equilibrium payoff, denoted lT(i,), is greater than tjs highest possible 
payoff from my; 

W{tj) >max Us(ti,mj,ak). 
ak£A 

Signaling Requirement 6 ("The Intuitive Criterion," Cho and 
Kreps 1987): If the information set following mj is off the eqiulibrium 
path and mj is equilibrium-dominated for type f(- then (if possible) the Re
ceiver's belief n{U | mj) should place zero probability on type tt, (This is 
possible provided mj is not equilibrium-dominated for all the types in T.) 

"Beer and Quiche" shows that a message m; can be equilibrium-
dominated for tj without being dominated for £,-. If m; is dom
inated for tif however, then mj must be equilibrium-dominated 
for tif so imposing Signaling Requirement 6 makes Signaling Re
quirement 5 redundant. Cho and Kreps use a stronger result due 
to Kohlberg and Mertens (1986) to show that any signaling game 
from the class denned in Section 4.2.A has a perfect Bayesian equi
librium that satisfies Signaling Requirement 6. Arguments in this 
spirit are sometimes said to use forward induction, because in inter
preting a deviation—that is, in forming the belief p(tt | mj)-—the 
Receiver asks whether the Sender's past behavior could have been 
rational, whereas backwards induction assumes that future behav
ior will be rational. 

To illustrate Signaling Requirement 6, we apply it to the envy 
case of the job-market signaling model analyzed in Section 4.2.B. 
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Figure 4.4.4. 

Recall that there are enormous numbers of pooling, separating, 
and hybrid perfect Bayesian equilibria in this model. Strikingly, 
only one of these equilibria is consistent with Signaling Require
ment 6—the separating equilibrium in which the low-ability work
er chooses his or her complete-information level of education and 
the high-ability worker chooses just enough education to make the 
low-ability worker indifferent about mimicking the high-ability 
worker, as illustrated in Figure 4.4.4. 

In any perfect Bayesian equilibrium, if the worker chooses ed
ucation e and the firms subsequently believe that the probability 
that the worker has high ability is fi(H \ e), then the worker 's wage 
will be 

w(e) = ti(H | e)-y(H,e) + [1 - ^ H | e))-y(L,e). 

Thus, the low-ability worker's utility from choosing e*(L) is at 
least y[L,e*(L)] - c[L,e*{L)}, which exceeds that worker 's utility 
from choosing any e > es, no matter what the firms believe af
ter observing e. That is, in terms of Signaling Requirement 5, 
any education level e > es is dominated for the low-ability type. 
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Roughly speaking, Signaling Requirement 5 then implies that the 
firms' belief must be fi(H \ e) = 1 for e > eSl which in turn implies 
that a separating equilibrium in which the high-ability worker 
chooses an education level e > es cannot satisfy Signaling Require
ment 5, because in such an equilibrium the firms must believe that 
n(H | e) < 1 for education choices between es and e. (A precise 
statement is: Signaling Requirement 5 implies that n(H | e) = 1 for 
e > es provided that e is not dominated for the high-ability type, 
but if there exists a separating equilibrium in which the high-
ability worker chooses an education level e > es then education 
choices between es and e are not dominated for the high-ability 
type, so the argument goes through.) Therefore, the only sep
arating equilibrium that satisfies Signaling Requirement 5 is the 
equilibrium shown in Figure 4.4.4. 

A second conclusion also follows from this argument: in any 
equilibrium that satisfies Signaling Requirement 5, the high-ability 
worker 's utility must be at least y(H,es) - c(H,es). We next show 
that this conclusion implies that some pooling and hybrid equilib
ria cannot satisfy Signaling Requirement 5. There are two cases, 
depending on whether the probability that the worker has high 
ability (q) is low enough that the wage function w = q • y{H, e) + 
(1 - q) • y(L, e) lies below the high-ability worker's indifference 
curve through the point [es,y(H,es)]. 

We first suppose that q is low, as shown in Figure 4.4.5. In this 
case, no pooling equilibrium satisfies Signaling Requirement 5, be
cause the high-ability worker cannot achieve the utility y(H,es) -
c(H,es) in such an equilibrium. Likewise, no hybrid equilibrium 
in which the high-ability worker does the randomizing satisfies 
Signaling Requirement 5, because the (education, wage) point at 
which pooling occurs in such an equilibrium lies below the wage 
function w = q • y(H,e) + (1 - q) • y(L,e). Finally, no hybrid equi
librium in which the low-ability worker does the randomizing 
satisfies Signaling Requirement 5, because the (education, wage) 
point at which pooling occurs in such an equilibrium must be 
on the low-ability worker's indifference curve through the point 
\e*(L),W(D]' as in Figure 4.2.9, and so lies below the high-ability 
worker's indifference curve through the point [es,y(H,es)), Thus, 
in the case shown m Figure 4.4.5, the only perfect Bayesian equi
librium that satisfies Signaling Requirement 5 is the separating 
equilibrium shown in Figure 4.4.4. & 
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Figure 4.4.5. 

We now suppose that q is high, as shown in Figure 4.4.6. 
As before, hybrid equilibria in which the low-ability type does 
the randomizing cannot satisfy Signaling Requirement 5, but now 
pooling equilibria and hybrid equilibria in which the high-type 
does the randomizing can satisfy this requirement if the pooling 
occurs at an (education, wage) point in the shaded region of the 
figure. Such equilibria cannot satisfy Signaling Requirement 6, 
however. 

Consider the pooling equilibrium at ep shown in Figure 4.4.7. 
Education choices e > e' are equilibrium-dominated for the low-
ability type, because even the highest wage that could be paid 
to a worker with education e, namely y{H,e), yields an (edu
cation, wage) point below the low-ability worker's indifference 
curve through the equilibrium point (ep,wp). Education choices 
between e' and e" are not equilibrium-dominated for the high-
ability type, however: if such a choice convinces the firms that 
the worker has high ability, then the firms will offer the wage 
y(H,e), which will make the high-ability worker better off than 
in the indicated pooling equilibrium. Thus, if e' < e < e" then 
Signaling Requirement 6 implies that the firms' belief must be 
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li(H \e) = \, which in turn implies that the indicated pooling equi
librium cannot satisfy Signaling Requirement 6, because in such 
an equilibrium the firms must believe that fi(H \ e) < 1 for edu
cation choices between e' and e". This argument can be repeated 
for all the pooling and hybrid equilibria in the shaded region of 
the figure, so the only perfect Bayesian equilibrium that satisfies 
Signaling Requirement 6 is the separating equilibrium shown in 
Figure 4.4.4. 

4.5 Further Reading 

Milgrom and Roberts (1982) offer a classic application of signaling 
games in industrial organization. In financial economics, Bhat-
tacharya (1979) and Leland and Pyle (1977) analyze dividend pol
icy and management share ownership (respectively) using signal
ing models. On monetary policy, Rogoff (1989) reviews repeated-
game, signaling, and reputation models, and Ball (1990) uses (un-
observable) changes in the Fed's type over time to explain the 
time-path of inflation. For applications of cheap talk, see the 
Austen-Smith (1990), Farrell and Gibbons (1991), Matthews (1989), 
and Stein (1989) papers described in the text. Kennan and Wilson 
(1992) survey theoretical and empirical models of bargaining un
der asymmetric information, emphasizing applications to strikes 
and litigation. Cramton and Tracy (1992) allow a union to choose 
whether to strike or hold out (i.e., continue working at the previ
ous wage); they show that holdouts occur frequently in the data, 
and that such a model can explain many of the empirical findings 
on strikes. On reputation, see Sobel's (1985) "theory of credibility," 
in which an informed party is either a "friend" or an "enemy" of 
an uninformed decision maker in a sequence of cheap-talk games. 
Finally, see Cho and Sobel (1990) for more on refinement in sig
naling games, including a refinement that selects the efficient sep
arating equilibrium in Spence's model when there are more than 
two types. 
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4.6 Problems 

Section 4.1 

4.1. In the following extensive-form games, derive the normal-
form game and find all the pure-strategy Nash, subgame-perfect, 
and perfect Bayesian equilibria. 

a. 

b. 

1 
3 

S&SGSSZXESSSSSL 
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mixed-strategy perfect Bayesian equilibrium? 

1 R 

Section 4.2 

4.3. a. Specify a pooling perfect Bayesian equilibrium in which 
both Sender types play R in the following signaling game. 

R 

.5 

Nature 

.5 

R 

3,1 

b. The following three-type signaling game begins with a move 
by nature, not shown in the tree, that yields one of the three types 
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with equal probability. Specify a pooling perfect Bayesian equilib
rium in which all three Sender types play L. 
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4 4 Describe all the pure-strategy pooling and separating perfect 
Bayesian equilibria in the following signaling games. 

a. 

1,1 *v u 
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4.5. Find all the pure-strategy perfect Bayesian equilibria in Prob
lem 4.3 (a) and (b). 

4.6. The following signaling game is analogous to the dynamic 
game of complete but imperfect information in Figure 4.1.1. (The 
types t\ and t2 are analogous to player l's moves of L and M 
in Figure 4.1.1; if the Sender chooses R in the signaling game 
then the game effectively ends, analogous to player 1 choosing R 
in Figure 4.1.1.) Solve for (i) the pure-strategy Bayesian Nash 
equilibria, and (ii) the pure-strategy perfect Bayesian equilibria of 
this signaling game. Relate (i) to the Nash equilibria and (ii) to 
the perfect Bayesian equilibria in Figure 4.1.1. 

• j-fforpnce curves and production functions for a 
4 .7 . D r a „ , ,nd ffe n « o i ^ P ^ g 

two-type Ph-™** * w h i ( ? h the high-ability worker random-
Bayesian equilibrium 

izes. 

Section 4.3 

c fhP rmre-strategy perfect Bayesian equilibria in the 
4 8 . solve for the P ^ ^ P

 i s e q 4 U y likely to be drawn 
f o l l o w i n g c h ^ P « m 4 3 J F ^ p a y o f f ^ ^ c e U h t h e 

^ ? ^ n d the second is the Receiver's, but the figure is not a 
Sender s a" 
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normal-form game; rather, it simply lists the players' payoffs from 
each type-action pair. 

h h h 
0,1 

1,0 

0,0 

0,0 

1,2 

0,0 

0,0 

1,0 

2,1 

4 9. Consider the example of Crawford and Sobel's cheap-talk 
model discussed in Section 4.3.A: the Sender's type is uniformly 
distributed between zero and one (formally, T = [0,1] and p(t) = 1 
for all t in T); the action space is the interval from zero to one 
,A = [o, 1]); the Receiver's payoff function is UR{t,a) = -(a - f)2; 
and the Sender's payoff function is Us(t,a) = -[a - (t + b)}2. For 
what values of b does a three-step equilibrium exist? Is the Re
ceiver's expected payoff higher in a three- or a two-step equi
librium? Which Sender-types are better off in a three- than in a 
two-step equilibrium? 

4.10. Two partners must dissolve their partnership. Partner 1 
currently owns share s of the partnership, partner 2 owns share 1 -
s. The partners agree to play the following game: partner 1 names 
a price, p, for the whole partnership, and partner 2 then chooses 
either to buy l's share for ps or to sell his or her share to 1 for 
p(l - s). Suppose it is common knowledge that the partners' val
uations for owning the whole partnership are independently and 
uniformly distributed on [0,1], but that each partner's valuation 
is private information. What is the perfect Bayesian equilibrium? 

4.11. A buyer and a seller have valuations v\, and vs. It is common 
knowledge that there are gains from trade (i.e., that v\, > vs), but 
the size of the gains is private information, as follows: the seller's 
valuation is uniformly distributed on [0,1]; the buyer's valuation 
V\, — k- vs, where k > 1 is common knowledge; the seller knows vs 

(and hence v\,) but the buyer does not know Vf, (or vs). Suppose 
the buyer makes a single offer, p, which the seller either accepts 
or rejects. What is the perfect Bayesian equilibrium when k < 2? 
When k> 2? (See Samuelson 1984.) 
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4.12. This problem considers the infinite-horizon version of the 
two-period bargaining game analyzed in Section 4.3.B. As before, 
the firm has private information about its profit M, which is uni
formly distributed on [0,7To], and the union makes all the wage 
offers and has a reservation wage wr = 0. 

In the two-period game, the firm accepts the union's first offer 
(w\) if 7r > -K\, where the profit-type IT] is indifferent between (i) ac
cepting w\ and (ii) rejecting w\ but accepting the union's second-
period offer {wi), and w2 is the union's optimal offer given that 
the firm's profit is uniformly distributed on [0,7ri] and that only 
one period of bargaining remains. In the infinite-horizon game, in 
contrast, Wi will be the union's optimal offer given that the firm's 
profit is uniformly distributed on [0, ir\] and that an infinite num
ber of periods of (potential) bargaining remain. Although it\ will 
again be the profit-type that is indifferent between options (i) and 
(ii), the change in Wi will cause the value of Tt\ to change. 

The continuation game beginning in the second period of the 
infinite-horizon game is a rescaled version of the game as a whole: 
there are again an infinite number of periods of (potential) bar
gaining, and the firm's profit is again uniformly distributed from 
zero to an upper bound; the only difference is that the upper 
bound is now m rather than IXQ. Sobel and Takahashi (1983) show 
that the infinite-horizon game has a stationary perfect Bayesian 
equilibrium. In this equilibrium, if the firm's profit is uniformly 
distributed from zero to it* then the union makes the wage of
fer IV(TT*) = bir*, so the first offer is /?7r0, the second bit\, and so 
on. If the union plays this stationary strategy, the firm's best re
sponse yields -a\ = C7r0,7r2 = CK\, and so on, and the expected 
present value of the union's payoff when the firm's profit is uni
formly distributed from zero to 7r* is V{n*) = dir*. Show that 
b = 2d, c = 1/[1 + v T ^ ] , and d = [VT^~6 ~ (1 - 6)]/2S. 

4.13. A firm and a union play the following two-period bargain 
ing game. It is common knowledge that the firm's profit, TT, is ufli" 
formly distributed between zero and one, that the union's reserva
tion wage is wr, and that only the firm knows the true value of *• 
Assume that 0 < wr < 1/2. Find the perfect Bayesian equilibrium 
of the following game: 

1. At the beginning of period one, the union makes a wage 

offer to the firm, w\. 
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2. The firm either accepts or rejects W\. If the firm accepts w\ 
then production occurs in both periods, so payoffs are 2wx 

for the union and 2{ir - w\) for the firm. (There is no dis
counting.) If the firm rejects w\ then there is no production 
in the first period, and payoffs for the first period are zero 
for both the firm and the union. 

3. At the beginning of the second period (assuming that the 
firm rejected W\), the firm makes a wage offer to the union, 
u>2. (Unlike in the Sobel-Takahashi model, the union does 
not make this offer.) 

4. The union either accepts or rejects zv2. If the union ac
cepts W2 then production occurs in the second period, so 
second-period (and total) payoffs are v>2 for the union and 
7r - W2 for the firm. (Recall that first-period payoffs were 
zero.) If the union rejects zo2 then there is no production. 
The union then earns its alternative wage, wr, for the second 
period and the firm shuts down and earns zero. 

4.14. Nalebuff (1987) analyzes the following model of pre-trial 
bargaining between a plaintiff and a defendent. If the case goes 
to trial, the defendant will be forced to pay the plaintiff an amount 
d in damages. It is common knowledge that d is uniformly dis
tributed on [0,1] and that only the defendant knows the true value 
of d. Going to trial costs the plaintiff c < 1/2 but (for simplicity) 
costs the defendant nothing. 

The timing is as follows: (1) The plaintiff makes a settlement 
offer, s. (2) The defendant either settles (in which case the plain
tiff's payoff is s and the defendant's is - s ) or rejects the offer. (3) If 
the defendant rejects s then the plaintiff decides whether to go to 
trial, where the plaintiff's payoff will be d — c and the defendant's 
~d, or to drop the charges, in which case the payoff to both players 
is zero. 

In stage (3), if the plaintiff believes that there exists some d* 
such that the defendant would have settled if and only if d > d*, 
what is the plaintiff's optimal decision regarding trial? In stage (2), 
given an offer of s, if the defendant believes that the probability 
that the plaintiff will go to trial if s is rejected is p, what is the 
optimal settlement decision for the defendant of type d? Given 
an offer s > 2c, what is the perfect Bayesian equilibrium of the 
continuation game beginning at stage (2)? Given an offer s < 2c? 
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What is the perfect Bayesian equilibrium of the game as a whole 
if c < 1/3? If 1/3 < c < 1/2? 

4.15. Consider a legislative process in which the feasible policies 
vary continuously from p = 0 to p = 1. The ideal policy for the 
Congress is c, but the status quo is s, where 0 < c < s < 1; that is, 
the ideal policy for Congress is to the left of the status quo. The 
ideal policy for the president is t, which is uniformly distributed 
on [0,1] but is privately known by the president. The timing is 
simple: Congress proposes a policy, p, which the president either 
signs or vetoes. If p is signed then the payoffs are -(c -p)1 for 
the Congress and — (t - p)2 for the president; if it is vetoed then 
they are —(c - s)1 and —[t - s)1. What is the perfect Bayesian 
equilibrium? Verify that c < p < s in equilibrium. 

Now suppose the president can engage in rhetoric (i.e., can 
send a cheap-talk message) before the Congress proposes a policy. 
Consider a two-step perfect Bayesian equilibrium in which the 
Congress proposes either vi or p#, depending on which message 
the president sends. Show that such an equilibrium cannot have 
c < pi < pn < s. Explain why it follows that there cannot be 
equilibria involving three or more proposals by Congress. Derive 
the details of the two-step equilibrium in which c = pL < pH < s: 
which types send which message, and what is the value of ptf. 
(See Matthews 1989.) 

Section 4.4 

4.16. Consider the pooling equilibria described in Problem 4.3 (a) 
and (b). For each equilibrium: (i) determine whether the equilib
rium can be supported by beliefs that satisfy Signaling Require
ment 5; (ii) determine whether the equilibrium can be supported 
by beliefs that satisfy Signaling Requirement 6 (The Intuitive Cri
terion). 
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