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Chapter 1

An Experiment

1.1 A First Price Sealed Bid Auction With
Private Values

• There is one object for sale.

• The object is of value e vi to bidder i = 1, . . . , n.

• v is private information to bidder i.

• Bidder i knows that vj is uniform iid on {10, 20, . . . , 100}, but i does
not know vj.

• Each bidder submits a bid without knowing the bids of the other bid-

ders.

• The bidder with the highest bid wins the object and pays the own bid.

• The payo� of the winner is own valuation - payment. All other bidders

receive zero.
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CHAPTER 1. AN EXPERIMENT 5

1.2 2nd Price Sealed Bid Auction With
Private Values

The rules of the auction are exactly the same as in the previous auction with

the exception of what the winner has to pay:

• The bidder with the highest bid wins the object and pays the second

highest bid.
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Chapter 2

A Survey on Auction Theory

Taken from Paul Klemperer `Auctions: Theory and Practice' (2004), chapter

one.

2.1 Four Standard Auction Types

Focus on single object auctions.

• ascending-bid auction (aka open, oral, or English auction)

Price rises continuously, bidders gradually quit the auction. Bidders

observe when their competitors quit and once someone quits, she is

not let back in. Last bidder who remains wins the object at the �nal

price.

• descending-bid auction (aka Dutch auction)

The auctioneer starts at very high price, and then lowers the price

continuously. The �rst bidder who accepts the price wins the object

at that price.

• �rst-price sealed bid auction

Each bidder independently submits a single bid without observing oth-
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CHAPTER 2. A SURVEY ON AUCTION THEORY 8

ers' bids. The object is sold to the bidder who makes the highest bid

at the price of the highest bid.

• second-price sealed bid auction (aka Vickrey auction)

Each bidder independently submits a single bid without observing oth-

ers' bids. The object is sold to the bidder who makes the highest bid

at the price of the second highest bid.

2.2 Basic Model of Auctions

Focus on symmetric and risk neutral bidders.

Private-Value Model: each bidder knows how much she values the object

for sale, but her value is private information to herself. Each bidder knows

the overall distribution of values among bidders.

Common-Value Model: the actual value of the object is the same for ev-

eryone, but bidders may have di�erent information about what the value is.

General Model: each bidder receives a private information signal. Each bid-

der's value is a function of all the signals.

Bidders: i = 1, . . . , n

The value of the object to bidder i: vi

The private signal of bidder i: ti

Private-Value Model:

vi = vi(ti) for each i = 1, . . . , n
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Common-Value Model:

vi = v(t1, . . . , tn) for all t1, . . . , tn and i = 1, . . . , n

General Model:

vi = vi(t1, . . . , tn), i = 1, . . . , n

Set of admissable valuations: Vi. Set of admissable signals: Ti.

Example: Oil�elds

Consider an oil�eld with an unkown capacity of v million gallons. v equals

15.000 or 1.500 each with probability 1
2. An experts sends the signal t = H

with prob. 2
3 and t = L with prob 1

3, if v = 15.000. If v = 1.500, then the

expert sends t = H with prob 1
3 and t = L with prob 2

3. Hence

Prob(v = 15.000|t = H) =
1
2 ·

2
3

1
2 ·

2
3 + 1

2 ·
1
3

=
2

3

and

Prob(v = 15.000|t = L) =
1
2 ·

1
3

1
2 ·

1
3 + 1

2 ·
2
3

=
1

3
.

Given the signal, the expected capacity of the oil�eld is

v(t) := E[v|t] =

{
2
3 · 15.000 + 1

3 · 1.500 = 10.500 if t = H
1
3 · 15.000 + 2

3 · 1.500 = 6.000 if t = L
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Consider now two signals (experts) t1, t2:

We have

Prob(15.000|H,H) =
1
2 ·

4
9

1
2 ·

4
9 + 1

2 ·
1
9

=
4

5

Prob(15.000|H,L) =
1
2 ·

2
9

1
2 ·

2
9 + 1

2 ·
2
9

=
1

2
= Prob(15.000|L,H)

Prob(15.000|L,L) =
1
2 ·

1
9

1
2 ·

4
9 + 1

2 ·
1
9

=
1

5

Hence

E[v|t1, t2]︸ ︷︷ ︸
v(t1,t2):=

=


4
5 · 15.000 + 1

5 · 1.500 = 12.300 if (t1, t2) = (H,H)
1
2 · 15.000 + 1

2 · 1.500 = 8.250 if (t1, t2) ∈ {(H,L), (L,H)}
1
5 · 15.000 + 4

5 · 1.500 = 4.200 if (t1, t2) = (L,L)

2.3 Bidding in the Standard Auctions

Descending Auction

The auction is dynamic, but the decision problem is static:

Each bidder i chooses a price bi at which she will call out, given ti.

→ strategy: bi : Ti → R+.

The bidder with the highest bid wins the object and pays the highest bid.

First-Price Sealed-Bid Auction

Each bidder must choose a bid bi given ti.

→ strategy: bi : Ti → R+.

The bidder with the highest bid wins the object and pays the highest bid.
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⇒ the descending auction and the 1st-p s-b auction are strategically equivalent.

(Strategies are the same, payo�s are the same).

Second-Price Sealed-Bid Auction

Each bidder must choose a bid bi, given ti.

→ strategy: bi : Ti → R+.

The bidder with the highest bid wins and pays the second highest bid.

Ascending Auction with Private Values: vi = vi(ti).

If i observes that j drops out, i learns something about vj and hereby about

tj. tj, however is irrelevant for vi.

Decision problem: at which price will I drop out, given my signal?

→ strategy: bi : Ti → R+.

The bidder with the highest value wins and pays the second highest value.

The ascending auction and the 2nd-p s-b auction are strategically equiv-

alent, if values are private.

Ascending Auction with Common Values: vi = v(t1, . . . , tn)

If some other bidder j drops out, i learns something about the value of the

object.

Decision problem: at which price will I drop out, given my signal and the

drop outs of my competitors?

The strategy space is richer than in the private value model.

Winner's Curse
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If the signals are symmetric around the true value and if bids are monotonic

in the signals, the winning bid is triggered by a signal which exceeds the

value.

Terminology

Descending & 1st-p s-b auction are equivalent for single object auctions. We

subsume these two types as `�rst-price auctions'.

Ascending & 2nd-p s-b auctions are equivalent under private values. We

subsume these two types as `second-price auctions'.

2.4 Analysis (a primer)

Second-price auction with independent private values

Strategy for player i = 1, . . . , n: βi : Vi → R+

Definition:

β̃i is weakly dominated by βi if

Ev−iui(β̃i(vi), β−i|vi) ≤ Ev−iui(βi(vi), β−i|vi) ∀ vi ∈ Vi, β−i ∈ S−i

with a strict inequality for at least one β−i ∈ S−i.

Definition:

βi is weakly dominant if any β̃i ∈ Si, β̃i 6= βi is weakly dominated by βi.

Definition:

The strategy βi with βi(vi) = vi ∀ vi ∈ Vi is called `bid your value'.
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Proposition:

Bid your value is a weakly dominant strategy.

Denote by b̂−i the highest bid from i's opponents: b̂−i = maxj 6=i bj.

Payo� function for given bids bi, b−i:

ui(bi, bj|vi) =


vi − bj if bi > b̂−i
vi−bi

|{j:bj=bi}|
if bi = b̂−i

0 if bi < b̂−i

Proof:

ui(bi = vi, bj|vi) =

{
vi − bj if vi > b̂−i

0 if vi ≤ b̂−i

Consider now some valuation vi ∈ Vi and two strategies β̂i and β̌i with

β̂i(vi) = v̂i > vi > v̌i = β̌i(vi).

b̂−i > v̂i b̂−i = v̂i vi < b̂−i < v̂i b̂−i = vi
ui(bi = v̂i, b−i|vi) 0 vi−v̂i

|{j:bj=v̂i}|
vi − b̂−i 0

ui(bi = vi, b−i|vi) 0 0 0 0

ui(bi = v̌i, b−i|vi) 0 0 0 0

v̌i < b̂−i < vi b̂−i = v̌i b̂−i < v̌i
ui(bi = v̂i, b−i|vi) vi − b̂−i vi − v̌i vi − b̂−i
ui(bi = vi, b−i|vi) vi − b̂−i vi − v̌i vi − b̂−i
ui(bi = v̌i, b−i|vi) 0 vi−v̌i

|{j:bj=v̌i}|
vi − b̂−i

Therefore, for any valuation vi ∈ Vi of bidder i and strategy β̃i with β̃i(vi) 6=
vi there exists some (n− 1)-tupel of strategies β−i with βj(vj) ∈ (vi, β̃i(vi)]

for all vj ∈ Vj and j 6= i, if β̃i(vi) > vi and with βj(vj) ∈ [β̃i(vi), vi) for all

vj ∈ Vj and j 6= i, if β̃i(vi) < vi such that

Ev−iui(βi(vi), β−i|vi) > Ev−iui(β̃i(vi), β−i|vi)
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and with

Ev−iui(βi(vi), β−i|vi) ≥ Ev−iui(β̃i(vi), β−i|vi)

for all other strategies β−i. �

Suppose the maximal bid of the opponents is b̌ < vi (dashed line) or that

the maximal bid of the opponents is b̂ > vi (dotted line), where vi is the

bidder's valuation for the object.

ui(bi, b̂−i|vi)

0
b̂−i

v

vib̌

b̂

The solid line represents the payo� of a bidder who drops out at the price

equal to her valuation v. The solid line is never below the dashed or the

dotted line, but strictly above the dashed or dotted line for some opponent's
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bid bj.

Exercise:

Find another equilibrium (in pure strategies)!

First-price sealed-bid auction with independent
private uniform values and two bidders

Two bidders i = 1, 2 with valuations vi ∼ U [0, 1]. Given the opponent's bid

bj, the own bid bi and the own valuation vi, bidder i's payo� is

ui(bi, bj|vi) =


vi − bi if bi > bj
1
2(vi − bi) if bi = bj

0 if bi < bj

Suppose the players use strategies βi : R+ → R+ which satisfy

• strict monotonicity: βi(vi) > βi(ṽi)⇔ vi > ṽi

• continuity

• di�erentiability

• symmetry (βi(vi) = βj(vj)⇔ vi = vj).

Then for each player i the inverse bid function exists and is given by β−1
i (b)

such that β−1
i (βi(vi)) = vi. Given bid bi ∈ R+ the probability that player i

wins the auction is

Prob(bi > βj(vj)) =


0 if bi < βj(0)

Prob(β−1
j (bi) > vj) = β−1

j (bi) otherwise

1 if bi > βj(1)

.
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If βj(0) ≤ bi ≤ βj(1), the expected payo� of player i is

(vi − bi) · β−1
j (bi) .

Maximizing with respect to bi gives the �rst order condition for bi = βi(vi)

−β−1
j (βi(vi)) + (vi − βi(vi)) ·

∂β−1
j (b)

∂b

∣∣∣∣∣
b=βi(vi)

= 0 .

Symmetry: βi(v) = βj(v) = β(v) such that

−β−1(β(v)) + (v − β(v)) · ∂β
−1(b)

∂b

∣∣∣∣
b=β(v)

= 0 .

Clearly β−1(β(v)) = v and ∂β−1(b)
∂b

∣∣∣
b=β(v)

= 1
∂β(v)
∂v

, hence

−v + (v − β(v)) · 1

β′(v)
= 0

or

v = β′(v) · v + β(v) = (β(v) · v)′ .

Integrating LHS: ∫ v̂

0

vdv =
1

2
· v̂2

Intergrating RHS: ∫ v̂

0

(β(v) · v)′ dv = β(v̂) · v̂

⇒ β(v̂) = 1
2 · v̂ .

Therefore there is a unique symmetric equilibrium with continuous and strictly

monotonic strategies in which both bidders i = 1, 2 bid according to

βi(vi) =
1

2
· vi .
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Expected Equilibrium Revenue

First-Price Auctions

E

[
1

2
max{v1, v2}

]
=

1

2

∫ 1

0

∫ v1

0

v1dv2+

∫ 1

v1

v2dv2dv1 =
1

4

∫ 1

0

1+v2
1dv2 =

1

3

Second-price Auctions

Two bidders i = 1, 2 with valuations vi ∼ U [0, 1], bi(vi) = vi

E[min{v1, v2}] =

∫ 1

0

∫ v1

0

v2dv2 +

∫ 1

v1

v1dv2 =

∫ 1

0

1

2
v2

1 +v1(1−v1)dv1 =
1

3

What is the expected revenue of `the other equlibrium'?

2.5 Double Auctions

Buyers and sellers are treated symmetrically. Buyers bid and sellers ask.

· Chatterjee and Samuelson (1983) `Bargaining under incomplete informa-

tion' OR

· Gibbons (1992): A primer in game theory p. 159

One buyer, one seller who holds one unit of a good.

Valuation of buyer: vb ∼ U [0, 1]

Valuation of seller: vs ∼ U [0, 1]

First Best

If vb > vs a trade with any price ∈ [vs, vb] is a Pareto improvement.
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vb

vs
0
0

vb = vs
1

1

trade e�cient

no trade e�cient

1st-best gains from trade∫ 1

0

∫ 1

vs

vb − vsdvbdvs =
1

6

strategies

Strategies for buyer and seller: β, σ : [0, 1]→ R+.

Standard auction

Suppose the seller asks s ∈ R+ and the bidder bids b ∈ R+.

• s > b: seller 'wins' (keeps the object).

• s = b: both win with prob. 1
2.
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• s < b: buyer wins.

1-st price auction: winner pays max{s, b} to seller.

2-nd price auction: winner pays min{s, b} to seller.

λ-price auction

Buyer bids b ≥ 0 and seller asks s ≥ 0.

Trade takes place if and only if b ≥ s.

Price: λ · b + (1− λ) · s, with λ ∈ (0, 1).

Payo�s

us(s, b|vs) =

{
λ · b + (1− λ) · s , if b ≥ s

vs , if b < s

ub(b, s|vb) =

{
vb − λ · b− (1− λ) · s , if b ≥ s

0 , if b < s

Expected payo�s

Evbus(s, β(vb)|vs) = prob{s > β(vb)} · vs
+ prob{s ≤ β(vb)} · (λ · Evb[β(vb)|β(vb) ≥ s] + (1− λ) · s)

Evsub(σ(vs), b|vb) = prob{σ(vs) > b} · 0
prob{σ(vs) ≤ b} · (vb − (λ · b + (1− λ) · Evs[σ(vs)|b ≥ σ(vs)]))+prob{σ(vs) ≤ b} · (vb − (λ · b + (1− λ) · Evs[σ(vs)|b ≥ σ(vs)]))
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Nash equilibrium

The strategies (β, σ) are a Bayes Nash equilibrium, if ∀ vb, vs ∈ [0, 1]

σ(vs) ∈ arg max
s ∈ R+

Eus(s, β(vb)|vs)

and

β(vb) ∈ arg max
b ∈ R+

Eub(b, σ(vs)|vb) .

There are many Bayes Nash equilibria of this game!!

One-Price-Nash equilibrium

Buyer strategy:

β(vb) =

{
0 if vb < x

x if vb ≥ x

Seller strategy:

σ(vs) =

{
x if vs ≤ x

1 if vs > x
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vb

0
0 vs

1

1x

x

s = x

b = 0

s = x

b = x

s = 1

b = 0

s = 1

b = x

Claim: σ(vb) is optimal given β.

Eus(s, β|vs) = Prob(β(vb) ≥ s) · (λ · E[β(vb)|b(vb) ≥ s] + (1− λ) · s)
+ Prob(β(vb) < s) · vs

Prob(β(vb) ≥ s) =


1 if s = 0

1− x if 0 < s ≤ x

0 if s > x

E[β(vb)|β(vb) ≥ s] =


0 · x + x · (1− x) , if s = 0

x , if 0 < s ≤ x

∅ , if s > x

Eus(s, β(vb)|vs) =


1 · [λ · x · (1− x) + (1− λ) · 0] + 0 · vs , if s = 0

(1− x) · [λ · x + (1− λ) · s] + x · vs , if 0 < s ≤ x

0 · [λ · ∅ + (1− λ) · s] + 1 · vs , if s > x
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If 0 < s ≤ x, then s = x is optimal.

If x < s, then any s is optimal.

⇒ Eus(s, β(vb)|vs) =


λ · x · (1− x) , if s = 0

(1− x) · x + x · vs , if s = x

vs , if s > x

→ s = 0 is worse than s = x!

(One) best reply: σ(vs) = x, if vs ≤ x and σ(vs) = 1, if vs > x .

Claim: β(vb) is optimal given σ.

Eub(b, σ(vs)|vb) = Prob(σ(vs) ≤ b) · (vb − λ · b− (1− λ) · E[σ(vs)|σ(vs) ≤ b])

+ Prob(σ(vs) > b) · 0

Prob(σ(vs) ≤ b) =


0 if b < x

x if x ≤ b < 1

1 if b ≥ 1

E[σ(vs)|σ(vs) ≤ b] =


∅ if b < x

x if x ≤ b < 1

x2 + 1− x if b ≥ 1

Eub(b, σ(vs)|vb) =


0 · (vb − λ · b− (1− λ) · ∅) if b < x

x · (vb − λ · b− (1− λ) · x) if x ≤ b < 1

1 ·
(
vb − λ · b− (1− λ) · (x2 + 1− x)

)
if b ≥ 1
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If b < x, then any b is optimal.

If x ≤ b < 1 then b = x optimal.

If b ≥ 1 then b = 1 optimal.

⇒ Eub(b, σ(vs)|vb) =


0 if b < x

x · (vb − x) if b = x

vb − λ− (1− λ) · (x2 + 1− x) if b = 1

b = x %b b < x ⇔

x · (vb − x) ≥ 0⇔ vb ≥ x

b = x �b b = 1 ⇔

vb · x− x2 > vb − λ− (1− λ) · (x2 + 1− x)⇔ vb < 1 + λ · x

⇒ b ≥ 1 is worse than b = x!

Hence the buyer prefers β(vb) = x to any other bid, if vb ≥ x and β(vb) = 0

is one best reply (of many), if vb < x. �

Remarks

The equilibrium strategies do not depend on λ ∈ (0, 1).

For each x ∈ (0, 1), there is a one-price equilibrium!

Players need to coordinate on a value for x ex ante.

Which x is preferred by the seller?

Two cases: ex ante & interim.
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Ex ante (seller does not know vs):

Eπs(s(vs), b(vb)) = prob{vs ≤ x} · ((1− x) · x + x · E[vs|vs ≤ x])

+ prob{vs > x} · E[vs|vs > x]

=
1

2
·
(
1− x3 + x2

)
⇒ x∗s =

2

3

Interim (seller knows vs):

Eπs(s(vs), b(vb)|vs) =

{
(1− x) · x + x · vs if vs ≤ x → xs(vs) = vs+1

2

vs if vs > x → xs(vs) = 0

xs(vs) =
vs + 1

2
�s xs(vs) = 0⇔

(
vs + 1

2

)2

> vsX

⇒ x∗s(vs) =
vs + 1

2
Is the equilibrium e�cient? no!

vb

vs
0
0

vb = vs

x

x

1

1

trade

Shaded areas: trade would be e�cient but does not take place.
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gains from trade � one price equilibria

For each trade the gain of trade is vb− vs. The expected gain from trade is∫ 1

x

∫ x

0

(vb − vs)dvsdvb =
1

2
· (1− x) · x

which is maximal at x = 1
2 for which the expected gain equals 1

8.

Exercise

Check whether there are one price equilibria with x = 0 or x = 1!

A�ne Equilibria

Suppose the buyer uses the strategy

β(vb) = γb + δb · vb with γb ≥ 0, δb > 0 .

Then the buyers's bid β is uniformly distributed on [γb, γb + δb] and

Prob(s ≤ β(vb)) =


1 if s ≤ γb
γb+δb−s

δb
if γb < s < γb + δb

0 if s ≥ γb + δb

E[β(vb)|s ≤ β(vb)] =


γb + δb · 1

2 if s ≤ γb
s+γb+δb

2 if γb < s < γb + δb

∅ if s ≥ γb + δb

.
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The seller expects

Eus(s, β(vb)|vs) =


1 ·
[
λ · (γb + 1

2 · δb) + (1− λ) · s)
]

, if s ≤ γb(
1− s−γb

δb

)
·
[
λ · s+γb+δb2 + (1− λ) · s

]
+s−γb

δb
· [vs] , if γb < s < γb + δb

0 · [λ·? + (1− λ) · s] + 1 · [vs] , if s ≥ γb + δb

If s ≥ γb + δb, then any s is optimal.

If s ≤ γb then s = γb is optimal.

If γb < s < γb + δb:

The �rst order condition implies σ(vs) = 1−λ
2−λ · (δb + γb) + 1

2−λ · vs.

σ(vs)

vs0 1
0

1
γs + δs

γb

1−λ
2−λ · (γb + δb)

γb + δb

γb + δb

Note that s(vs = γb+ δb) = γb+ δb and that σ(vs) > γb+ δb ∀ vs > γb+ δb.

Further if vs ≥ γb−(1−λ)·δb, then σ(vs) ≥ γb. Assume γb−(1−λ)·δb < 0.
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Then

σ(vs) =
1− λ
2− λ

· (γb + δb) +
1

2− λ
· vs ∀ vs ∈ [0, 1]

Suppose the seller's strategy is

σ(vs) = γs + δs · vs with γs ≥ 0, δs > 0 .

Then the seller's ask is uniformly distributed on [γs, γs + δs] and The prob-

ability that a trade takes place is

Prob(σ(vs) ≤ b) = Prob(γs + δs · vs ≤ b)

=


0 if b ≤ γs
b−γs
δs

if γs < b < γs + δs

1 if b ≥ γs + δs

.

E[σ(vs)|b ≥ σ(vs)] =


∅ if b ≤ γs
γs+b

2 if γs < b < γs + δs

γs + δs · 1
2 if b ≥ γs + δs

The bidder's payo�:

Eπb(b, σ(vs)|vb)

=


0 , if b ≤ γs
b−γs
δs
·
[
vb − λ · b− (1− λ) · γs+b2

]
, if γs < b < γs + δs

1 ·
[
vb − λ · b− (1− λ) · (γs + 1

2δs)
]

, if b ≥ γs + δs

b ≤ γs: any such b is optimal.

b ≥ γs + δs: b = γs + δs is optimal.

γs < b < γs + δs:

The �rst order condition yields β(vb) = λ
λ+1 · γs + 1

λ+1 · vb.
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The second order condition is satis�ed (−1+λ
δs

< 0).

Eub

(
β(vb) =

λ

1 + λ
· γs +

1

1 + λ
· vb, σ(vs)

∣∣∣∣ vb) =
(vb − γs)2

2 · (1 + λ) · δs
≥ 0

β(vb)

vb0 1
0

1
γs + δs

γs + (1 + λ) · δsγs

γs

λ
1+λ · γs

1
1+λ + λ

1+λ · γs

Note that b(vb = γs) = γs. Hence for vb ≤ γs it is optimal to bid β(vb) ≤ γs

at which the probability of trade is zero. Further, if vb = γs+(1+λ)·δs, then
β(vb) = γs+δs. Hence β(vb) = γs+δs is optimal for all vb > γs+(1+λ)·δs.
Assume γs + (1 + λ) · δs > 1.

⇒ β(vb) =
λ

1 + λ
· γs +

1

1 + λ
· vb ∀ vb ∈ [0, 1]
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The bidding strategies

β(vb) =
λ

λ + 1
· γs +

1

λ + 1
· vb

σ(vs) =
1− λ
2− λ

· (δb + γb) +
1

2− λ
· vs

imply that
γb = λ

λ+1 ·
1−λ

2 δb = 1
λ+1

γs = 1−λ
2 δs = 1

2−λ

Remarks

• γb < γs and γb + δb < γs + δs ∀ λ ∈ (0, 1)

• The e�cient strategies β(vb) = vb, σ(vs) = vs are not individually rational.

Illustration for λ =
1

2
: β(vb) =

1

12
+

8

12
· vb σ(vs) =

3

12
+

8

12
· vs

σ(vs), β(vb)

vs, vb

β(vb)

9
12

(
1− λ

2

)

0
0

1

1

1
12

(
λ
λ+1 ·

1−λ
2

)

σ(vs)

11
12

(
1− λ

2 + λ
2(2−λ)

)

3
12

(
1−λ

2

)
3
12

9
12
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Trade does not take place if vb <
3
12 or if vs >

9
12:

vb

vs

1

1
0
0

vb = vs

3
12

9
12

trade

no
tra
de
bu
t v

b
≥
v s

expected gain from trade � a�ne equilibrium

1

6
>

∫ 1

1
4

∫ vb−1
4

0

vb − vsdvsdvb =
9

64
>

1

8

· Wilson (1985): multi-buyer/multi-seller generalization. If there are su�-

ciently many buyers and sellers, the auction is e�cient.



Chapter 3

The `3G' Mobile-Phone Auctions

Taken from Klemperer `Auctions: Theory and Practice' chapter 5

Resp. Klemperer (2002) `How (not) to run auctions: The European 3G

telecom auctions' EER and Klemperer (2002) `What really matters in auction

design' JEP

3.1 Overview of the European Auctions

The good that was sold was quite similar: blocks of spectrum

Ex ante expectations:

• roughly constant per capita value

• smaller countries (-)

• centrally located countries (+)

• richer countries (+)

31
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2000 2001

United Kingdom (March / April) 650 Belgium (March) 45

(ascending)

Netherlands (July) 170 Greece (July) 45

(ascending)

Germany (July / August) 615 Denmark (September) 95

Italy (October) 240

(ascending)

Austria (November) 100

Switzerland (November / December) 20

(ascending)

Revenue in per capita Euros of the European `3rd generation' mobile

telecommunication (or UMTS) licences

Sequence of auctions: the market sentiment cooled over time.

What does really matter in aution design?

· attract entry!
· prevent collusion!
→ in industrial organization, the social planner has the same goals!

• disadvantages of ascending auctions:

bidders use early rounds to signal

bidders use later rounds to punish those who fail to cooperate

entry deterrence: weaker potential bidders know that stronger bid-

der can always top bids
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• advantages of sealed bid auctions:

neither signalling nor punishment possible

topping an opponent's bid is more costly

• disadvantages of sealed bid auctions:

more likely that a low valuation bidder wins → ine�cient outcome

The UK Auction (March-April 2000)

• world's �rst 3G auction

• plan: sell four licences

• problem: four (2G-)incumbents

with customer bases, lower costs of building infrastructure

→ entry deterrence!

• hybrid auction design:

ascending auction until only �ve bidders remain

after which the survivors submit sealed bids (above current price)

the four highest bids receive a licence at the fourth highest bid.

• design performed extremely well in experiments

• during the planning period, �ve licences became available

• → ascending auction

each bidder could only win one licence
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licences were indivisible

→ collusion di�cult

• one licence for a non-incumbent: carrot to attract entrants

• result: nine new entrants, revenue of 39 billion euros (650 p. c.)

See Binmore and Klemperer (2002)

The Netherlands Auction (July 2000)

• four strong and one weak incumbent

• �ve licences

• ascending auction

• dysfunctional competition policy

→ weak incumbent joined with Deutsche Telekom

→ very few entrants would show up in the auction

• in the end one entrant (Versatel) showed up but stopped bidding after

receiving a legal threat by one of the incumbents (Telfort).

• Government failure:

no action against Telfort

no minimum prices

• result: no new entrant, revenue of 3 billion euros (170 p. c.)

• sealed bid auction would have been better!
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The German Auction (July-August 2000)

• twelve blocks of spectrum, bidders could create licences of either two

or three blocks.

• at most one licence for each �rm

• possible outcomes:

four winners with each three blocks

�ve winners: two with three blocks, three with two blocks

six winners with each two blocks

• ascending auction

• the number of winners

depends on bidders, who might have better info than the govern-

ment

does not depend on consumers' interests

• complexity of this auction could have caused problems, but the gov-

ernment was lucky.

• two incumbents

Deutsche Telekom, 40% Vodafone-Mannesmann, 40%

• seven bidders participated

• collusive o�er by MobilCom:
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`Should [Debitel] fail to secure a license [it could] become a `virtual

network operator' using MobilCom's network while saving on the cost

of the license'.

• No punishment by government

• Again: no reserve price.

• Debitel quitted not immediately, but at a relatively low level

• six bidders left → two strategies for incumbents

raise price to force two of the weaker �rms to quit

→ high auction revenues but concentrated industry

tacit collusion

→ low auction revenue but competitive industry

• Vodafone-Mannesmann endet a number of bids with the digit `6'

• Deutsche Telekom pushed up the price but giving up at the UK-reserve

price level of the weaker competitors.

Telekom is owned by the government!

• result: high revenues & unconcentrated industry!

Jehiel and Moldovanu (2001)

Grimm et al (2001)
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The Italian Auction (October 2000)

• Same design as UK-auction

• additional rule

if there are not enough bidders in the prequali�cation, then the

number of licences can be reduced.

• �rms had learned from the earlier auctions who were the strongest

bidders

→ much less entrants as compared with the UK auction

• six bidders entered to compete for �ve licences

• one bidder quit after less than two days

• result: 14 billion euros

• a sealed bid auction would have been better!

The Swiss Auction (November / December 2000)

• Same design as UK-auction

• four licences

• four bidders

• very low reserve price

• result: desaster. the four bidders had to pay the reserve price.



Chapter 4

General Symmetric Private Values

Taken from Vijay Krishna `Auctions Theory' (2009), chapter two.

• single object for sale

• N ∈ N potential bidders, N ≥ 2

• bidder i = 1, . . . , N has valuation Vi

• each Vi is iid on [0, ω] according to cdf F (with ω ∈ R+)

• F has continuous density f = F ′ and has full support.

• E[Vi] <∞

• Bidder i knows

realization vi of Vi

other bidders' values are iid according to F

• no liquidity constraints, risk neutral bidders

• All this is common knowledge.

• strategy for bidder i: βi : [0, ω]→ R+

38
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Subject of Analysis & Research Question

We analyze

1. A �rst-price sealed-bid auction, where the highest bidder gets the object

and pays the amount he bids.

2. A second-price sealed-bid auction, where the highest bidder gets the

object and pays the second highest bid.

We ask

• What are symmetric equilibrium strategies in a �rst-price auction (1.)

and a second-price auction (2.)?

• From the point of view of the seller, which of the two auction formats

yields a higher expected selling price in equilibrium?

Given the bids b = (b1, . . . , bN) and given the bid bi of bidder i, de�ne

b̂−i := max
j 6=i

bj. Given the random variables V = (V1, . . . , VN), de�ne

V̂−i := max
j 6=i

Vj.

Second Price Auctions

Given the realization vi of bidder i the payo�s are

ui(bi, b−i|vi) =


vi − b̂−i bj , if bi > b̂−i

1
|{j:bj=bi}|

· (vi − bi) , if bi = b̂−i

0 , if bi < b̂−i
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Proposition:

β(v) = v is a weakly dominant strategy.

Proof:

See proof for the case N = 2 and F (v) = v. (The proof makes no use of

the number of bidders and the distribution of valuations, evcept for private

values.)

Expected Payments in Second Price Auctions

Given that βi(vi) = vi ∀ i, the probability that bidder i with bid vi wins:

Prob

(
max
j 6=i

Vj < vi

)
=
∏
j 6=i

Prob (Vj < vi) =
∏
j 6=i

F (vi) = F (vi)
N−1 =: G(vi)

G(vi) is the cdf of the second highest valuation given that vi is the highest

valuation. Density: g(vi) = dG(vi)
dvi

Expected price conditional on vi > Vj ∀ j 6= i:

E
[
V̂−i

∣∣∣ V̂−i < vi

]
=

1

G(vi)
·
∫ vi

0

ydG(y)

⇒ bidder i with valuation and bid vi expects to pay

G(vi) · E
[
V̂−i

∣∣∣ V̂−i < vi

]
=

∫ vi

0

ydG(y) .

First-Price Auctions

A bidder with valuation vi and bid bi has payo�

ui(bi, b−i|vi) =


vi − bi , if bi > b̂−i

1

|{j:bj=bi}| · (vi − bi) , if bi = b̂−i

0 , if bi < b̂−i

.
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Symmetric Equilibrium

Suppose all bidders j 6= i use the same strictly increasing and di�erentiable

strategy β : [0, ω]→ R+.

Bidder i with value vi should not bid bi >
highest potential bid

β(ω) ! ⇒ βi(vi) ≤ β(ω).

Bidder i with value 0 should not bid bi > 0! ⇒ βi(0) = 0.

Bidder i wins the auction whenever max
j 6=i

β(Vj) < βi(vi).

β(·) strictly increasing ⇒ max
j 6=i

β(Vj) = β

(
max
j 6=i

Vj

)
= β

(
V̂−i

)
.

Probability of Winning

Bidder i with bid bi wins the auction, if V̂−i < β−1 (bi).

Prob
(
V̂−i < β−1 (bi)

)
= G

(
β−1 (bi)

)
Necessary Condition for Optimality

⇒ bidder i with valuation vi and bid bi expects payo�s:

G
(
β−1 (bi)

)
· (vi − bi)

First order condition:

g
(
β−1(bi)

)
· 1

β′ (β−1(bi))
· (vi − bi)−G

(
β−1 (bi)

)
= 0
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Assume bi = β(vi) (symmetry) and rearrange:

⇒ g (vi) · vi = G (vi) · β′ (vi) + g(vi) · β(vi) =
d

dv
(G(vi) · β(vi))

⇒ β(vi) =
1

G(vi)
·
∫ vi

0

g (y) · y dy

= E
[
V̂−i

∣∣∣ V̂−i < vi

]
Su�ciency

Suppose bidder i with valuation vi deviates and bids bi instead of β(vi).

De�ne zi = β−1(bi).

If the other players believe that bidder i uses β(·), then they believe that the

realization of Vi is zi.

EUi(bi, β|vi) = G(zi) · (vi − β(zi))

= G(zi) · vi −
∫ zi

0

y · g(y)dy

= G(zi) · vi −
(
G(zi) · zi −

∫ zi

0

G(y)dy

)
= G(zi) · (vi − zi) +

∫ zi

0

G(y)dy

If bidder i does not deviate (bi = β(vi) ⇒ zi = β−1(β(vi)) = vi), he

expects

EUi(β(vi), β|vi) = G(vi) · (vi − β(vi)) =

∫ vi

0

G(y)dy
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Hence

EUi(β(vi), β|vi)− EUi(β(zi), β|vi) =

∫ vi

0

G(y)dy

−G(zi) · (vi − zi)−
∫ zi

0

G(y)dy

= G(zi) · (zi − vi) +

∫ vi

zi

G(y)dy

≥ G(zi) · (zi − vi) +

∫ vi

zi

G(zi)dy

= G(zi) · (zi − vi) + G(zi) · (vi − zi) = 0

Gra�cal `proof':

G(y)

yz′i

G(z′i)

G(vi)

G(z′′i )

vi z′′i

Figure 4.1: The gray areas depict the losses from over- and underbidding.

EUi(β(vi), β|vi) > EUi(bi, β|vi) ∀ bi 6= β(vi)

Lemma

β(vi) < vi ∀vi ∈ (0, ω]
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Proof

Clearly, y·g(y) < G(y)+y·g(y) ∀ y ∈ (0, ω]. AsG(y)+y·g(y) = (y ·G(y))′

we have that∫ vi

0

y · g(y)dy < vi ·G(vi)⇔
1

G(vi)
·
∫ vi

0

y · g(y)dy < vi

�

Exercise: calculate the equilibrium bid function for N bidders with uniformly

distributed valuations!

Expected Payments in First-Price Auctions

Bidder i with valuation vi and bid β(vi) expects to pay

G(vi) · β(vi) = G(vi) · E
[
V̂−i

∣∣∣ V̂−i < vi

]
=

∫ vi

0

ydG(y)

Proposition

With independently and identically distributed private values, the expected

revenue in a �rst-price auction is the same as the expected revenue in a

second-price auction.

Reserve Prices in Second-Price Auctions

Consider reserve price r > 0.

A bidder with vi ≤ r cannot gain from winning

⇒ βi(vi) = vi is optimal.

For vi > r: βi(vi) = vi is weakly dominant.
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Expected payment of bidder i with valuation vi ≥ r:

G(vi) ·max
{
E
[
V̂−i

∣∣∣ V̂−i < vi

]
, r
}

= r ·G(r) +

∫ vi

r

y · g(y) dy

Reserve Prices in First-Price Auctions

Consider reserve price r > 0.

A bidder with vi ≤ r cannot gain from winning.

Symmetric equilibrium strategy for vi ≥ r: (without derivation)

β(vi) = max
{
E
[
V̂−i

∣∣∣ V̂−i < vi

]
, r
}

⇒ Expected payment of bidder with vi ≥ r:

G(vi) · β(vi) = r ·G(r) +

∫ vi

r

y · g(y) dy

⇒ Revenue equivalence does only hold if reserve prices are the same!

No general revenue equivalence!

Revenue E�ects of Reserve Prices

Ex ante expected payment of bidder i:∫ ω

r

(
r ·G(r) +

∫ vi

r

y · g(y) dy

)
f (vi)dvi

= r ·G(r) · (1− F (r)) +

∫ ω

r

∫ vi

r

y · g(y) dy f (vi) dvi

= r ·G(r) · (1− F (r)) +

∫ ω

r

y · g(y) · (1− F (y)) dy
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Interchanging the Order of Integration∫ ω

r

∫ vi

r

y · g(y) · f (vi) dy · dvi =

∫ ω

r

∫ ω

y

y · g(y) · f (vi) dvi · dy

y

vr ω

r

ω

v = y

Expected revenue:

N ·
(
r ·G(r) · (1− F (r)) +

∫ ω

r

y · g(y) · (1− F (y)) dy

)
Optimal Reserve Price

Suppose the seller attaches a value v0 ∈ [0, ω) to the object.

Clearly: r ≥ v0!

⇒ the seller maximizes

N ·
(
r ·G(r) · (1− F (r)) +

∫ ω

r

y · g(y) · (1− F (y)) dy

)
+ F (r)N · v0 .

First order condition:

N · (G(r) · (1− F (r))−G(r) · r · f (r)) + N · F (r)N−1︸ ︷︷ ︸
G(r)

·f (r) · v0 = 0
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⇒ f (r∗)

1− F (r∗)
· (r∗ − v0) = 1

Hazard Rate λ(v) = f(v)
1−F (v)

Example

F (·): life distribution

→ λ(t)dt conditional probability of death in [t, t+ dt] given survival until t.

Remarks:

F (·) has full support
⇒ λ(v) > 0 ∀ v

Solutions to the First Order Condition

• v0 = 0 ⇒
∂2EU0

(∂r)2

∣∣∣∣
r=v0

= N · g(0) > 0⇒ r∗ > 0

• v0 > 0 ⇒
∂EU0

∂r

∣∣∣∣
r=v0

= N ·G(v0) · (1− F (v0)) > 0⇒ r∗ > v0

⇒ (r∗ − v0) · λ(r∗) = 1

Su�ciency?

∂2EU0

(∂r)2

∣∣∣∣
r=r∗

= N ·G(r∗) · (−λ(r∗)︸ ︷︷ ︸
>0

− (r∗ − v0)︸ ︷︷ ︸
>0

·λ′(r∗))

If the hazard rate is monotonic, then r∗ is the optimal reserve price.
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Remarks on the Optimal Reserve Price

The optimal reserve price is de�ned by (r∗ − v0) · λ(r∗) = 1

• if λ′(r∗) > 0

• does not depend on the number of bidders!

• excludes bidders with positive probability, even if v0 = 0!

• induces ine�cient outcome with positive probability (r∗ > v0)

F (r∗)N − F (v0)N

Optimal Reserve Price for F (v) = v

• F (r) = r, f (r) = 1, ⇒ λ(r) = 1
1−r

• (r∗ − v0) · 1
1−r∗ = 1⇔ r∗ = 1+v0

2

The Seller's Expected Payo� and the Reserve Price
for v0 = 0 and N = 2

⇒ EU0(r∗) = 1
N+1 ·

(
N − 1 +

(
1
2

)N)
=
∣∣∣
N=2

5
12 >

1
3

EU0

0 1 r

1
3

5
12

1
2
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Literature

• Vickrey (1961)

Equilibrium strategies for F (v) = v in 1st & 2nd-price auctions, rev-

enue equivalence

• Vickrey (1962)

as above for general F (v)

• Myerson (1981), Riley & Samuelson (1982)

reserve prices



Chapter 5

The Revenue Equivalence Principle

Taken from Vijay Krishna `Auction Theory' (2009), chapters three and four.

5.1 Independent and Symmetric Values,
Risk-Neutral Bidders

De�nition

An auction A is a standard auction, if the highest bid wins the object.

Theorem

Suppose that values are independently and identically distributed, that the

density is atomless, that all bidders are risk neutral and that A is a standard

auction.

Then any symmetric and increasing equilibrium in which the expected pay-

ment of a bidder with value zero is zero yields the same expected revenue to

the seller.
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Proof

Consider an auction A and �x a symmetric and increasing equilibrium β of

A.

mA(v): expected equilibrium payment by a bidder with value v.

Suppose bidder i bids β(z) instead of β(vi), z 6= vi.

He wins, if z > max
j 6=i

Vj.

His expected payo� is

EUA
i (z, β|vi) = G(z) · vi −mA(z) .

First order condition:

∂

∂z
EUA

i (z, β|vi) = g(z) · vi −
d

dz
mA(z) = 0

In equilibrium it is optimal to report z = vi, hence

d

dv
mA(v) = g(v) · v ∀ v ∈ [0, ω]

and therefore

mA(v)−mA(0) =

∫ v

0

g(y) · y dy = G(v) · E
[

max
j 6=i

Vj

∣∣∣∣ max
j 6=i

Vj < vi

]
�

Application: Equilibrium of All-Pay Auctions

βAP (v) = mAP (v)

=

∫ v

0

y · g(y) dy
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Expected payo� given bid β(z) when value is v:

G(z) · v −
∫ z

0

y · g(y) dy = G(z) · (v − z) +

∫ z

0

G(y)dy

which is maximal for z = v.

5.2 Risk-Averse Bidders

Suppose that each bidder has a utility function

u : R+ → R
with

• u(0) = 0

• u′ > 0

• u′′ < 0

and is an expected utility maximizer.

Lemma If u(·) is strictly concave, we have u(y)
u′(y) > y ∀ y > 0.

Proof

Write u(y)−u(0) =
∫ y

0 u
′(s)ds and u′(s) =

∫ s
0 u
′′(x)dx+u′(0). As u(0) = 0

we have u(y) =
∫ y

0

∫ s
0 u
′′(x)dx + u′(0)ds.

By changing the order of integration, we have

u(y) =

∫ y

0

∫ y

x

u′′(x)dsdx +

∫ y

0

u′(0)ds =

∫ y

0

u′′(x)(y − x)dx + u′(0) · y

Hence

u(y)− y · u′(y) = −
∫ y

0

x · u′′(x)dx > 0⇔ u(y) > u′(y) · y
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�

u(v)

vy

u(y)

slope: u(y)
y

slope: u′(y)

Proposition

Suppose that bidders are risk-averse and have identical utility functions. With

symmetric, independent values, the expected revenue in a �rst-price auction

is greater than in a second-price auction.

Proof

• second-price auction:

bid your value is still a dominant strategy.

→ expected price is the same as with risk-neutrality.

• �rst-price auction:

Suppose all bidders use the same increasing and di�erentiable function

γ : [0, ω]→ R+

with γ(0) = 0.

It is not optimal to bid b > γ(ω) for any value.

Given value v, the optimization problem is

max
z∈[0,ω]

G(z) · u(v − γ(z))
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First order condition:

g(z) · u(v − γ(z))−G(z) · u′(v − γ(z)) · γ′(z) = 0

If γ is an equilibrium strategy, then z = v satis�es the FOCs.

(5.1) ⇒ g(v) · u(v − γ(v))

u′(v − γ(v))
−G(v) · γ′(v) = 0

By u(x)
u′(x) > x ∀ x > 0:

g(y) · (y − γ(y))−G(y) · γ′(y) < 0 ∀ y > 0

⇔ g(y) · y < g(y) · γ(y) + G(y) · γ′(y) ∀ y > 0

⇒
∫ v

0

g(y) · ydy <

∫ v

0

(G(y) · γ(y))′ dy

= G(v) · γ(v)−G(0) · γ(0)

⇒ γ(v) >
1

G(v)

∫ v

0

g(y) · ydy = β(v) ∀ v ∈ (0, ω]

�

E�ect of risk-aversion in �rst-price auction:

⇒ increase in equilibrium bids

⇒ increase in expected equilibrium revenues

If bidders are risk averse, the expected revenue of a �rst price auction is

higher than the expected revenue of a second price auction!

Example

Suppose u(x) = xθ ∀ x ≥ 0 with θ ∈ (0, 1) and vi
U, iid∼ [0, 1] for i = 1, 2.

Then G(v) = F (v) = v and g(v) = f (v) = 1. As u′(x) = θ · u(x)
x we have
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u(x)
u′(x) = x

θ . Then the �rst order condition is

(5.2)
v − γ(v)

θ
= v · γ′(v)

Consider F̃ (v) = v
1
θ . Then G̃(v) = v

1
θ , g̃(v) = 1

θ · v
1
θ−1.

If γ(v) solves (5.2), then γ(v) solves (5.1) with G̃(v) and

γ(v) =
1

G̃(v)
·
∫ v

0

y · g̃(y)dy =
1

1 + θ
· v

For a given θ ∈ (0, 1), the equilibrium strategies of

• N , F (v) = v, u(x) = xθ

• N , F̃ (v) = v
1
θ , ũ(x) = x

• Ñ = N−1+θ
θ , F (v) = v, ũ(x) = x

are identical.

5.3 Asymmetries among Bidders

Two risk-neutral bidders, vi ∼ [0, ωi] with cdf Fi and ω1 > ω2

Second-Price Auction

Bid your value is dominant.


