Prof. Dr. Ivan Veselić

Dr. Albrecht Seelmann

Klausur I zur Vorlesung

Analysis I

im Wintersemester 2017/18

Aufgabe 1) $(2+2\times3=8 \text{ Punkte})$

- (a) (2 Punkte) Bestimmen Sie den Grenzwert der Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n=\sqrt{n^2+n+1}-n,$ $n\in\mathbb{N}.$
- (b) Untersuchen Sie die folgenden Reihen auf Konvergenz:

(i) (3 Punkte)
$$\sum_{k=1}^{\infty} \frac{3^k (k!)^2}{(2k)!}$$
 (ii) (3 Punkte) $\sum_{k=1}^{\infty} \frac{1}{(k-\pi)^2}$

Aufgabe 2) (6 Punkte)

Bestimmen Sie alle $x \in \mathbb{R}$, x > 0, für welche die Reihe $\sum_{k=1}^{\infty} \left(\frac{x-3}{2\sqrt{x}}\right)^k$ konvergiert und geben Sie den Reihenwert als Funktion in x an.

Aufgabe 3) (3+3=6 Punkte)

Seien $f, g: \mathbb{R} \to \mathbb{R}$. Beweisen oder widerlegen Sie:

- (a) (3 Punkte) Ist f in 0 stetig und g in 0 differenzierbar, und gilt g(0) = 0, so ist fg in 0 differenzierbar.
- (b) (3 Punkte) Ist f in 0 stetig und g in 0 differenzierbar, und gilt f(0) = 0, so ist fg in 0 differenzierbar.

Aufgabe 4) (5 Punkte)

Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x) := \begin{cases} x \sin(x) + 1, & x < 0, \\ \exp(x^3), & x \ge 0. \end{cases}$$

Untersuchen Sie in welchen Punkten $x \in \mathbb{R}$ die Funktion f stetig, differenzierbar bzw. zweimal differenzierbar ist.

Aufgabe 5) (2+4=6 Punkte)

- (a) (2 Punkte) Berechnen Sie den Grenzwert $\lim_{x\to 0} \frac{\ln(1+x)}{x}$.
- (b) (4 Punkte) Berechnen Sie das Integral $\int_{-1}^{1} \frac{3x}{\sqrt{5-4x}} dx$.

Aufgabe 6) (6 Punkte)

Sei $f \colon (0, \infty) \to (0, \infty)$ gegeben durch $f(x) := \frac{1}{x^2 + \sqrt{x}}$.

Zeigen Sie: f ist bijektiv, und die Umkehrfunktion f^{-1} : $(0, \infty) \to (0, \infty)$ ist differenzierbar.

Hinweis: Eine explizite Darstellung für f^{-1} wird nicht gefordert!

Aufgabe 7) (5 Punkte)

Zeigen Sie für $n \in \mathbb{N}$ mit Hilfe von partieller Integration, dass das uneigentliche Riemann-Integral $\int\limits_0^\infty t^{n-1}e^{-t}\,\mathrm{d}t$ existiert und den Wert (n-1)! hat.

Hinweis: Induktion.

Aufgabe 8) (4 Punkte)

Sei $f \colon \mathbb{R} \to \mathbb{R}$ stetig, und sei $g \colon \mathbb{R} \to \mathbb{R}$ definiert durch

$$g(x) := \begin{cases} 1, & \text{falls } f(x) \le 1, \\ f(x), & \text{falls } f(x) > 1. \end{cases}$$

Zeigen Sie, dass g stetig ist.

Tipp: Für Stetigkeit in $x_0 \in \mathbb{R}$ Fallunterscheidung für den Wert von $f(x_0)$.