

Prof. Dr. Ivan Veselić

3. Übungsblatt zur Vorlesung

Dr. Albrecht Seelmann

Analysis I

im Wintersemester 2017/18

Präsenzaufgabe A)

Bestimmen Sie alle $n \in \mathbb{N}$ mit $2^n \ge n^2$.

Präsenzaufgabe B)

Zeigen Sie für
$$a \in \mathbb{R} \setminus \{1\}$$
: $\prod_{k=0}^n (1+a^{(2^k)}) = \frac{1-a^{(2^{n+1})}}{1-a}$ für alle $n \in \mathbb{N}_0$.

Präsenzaufgabe C)

Zeigen Sie
$$\sum\limits_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2$$
 für alle $n\in\mathbb{N}.$

Aufgabe 7) (Induktion) (2+2=4 Punkte)

(a) Gegeben sei $p_n:=\prod_{k=2}^n \frac{k^2}{k^2-1}$ für $n\in\mathbb{N},\,n\geq 2.$

Berechnen Sie p_n für n=2,3,... bis Sie ein Bildungsgesetz erkennen/vermuten, und beweisen Sie dies durch Induktion.

(b) Für $n \in \mathbb{N}_0$ sei $a_n \in \mathbb{N}$ durch die folgende Rekursionsformel gegeben:

$$a_0 := a_1 := 1$$
, $a_n := 6a_{n-2} - a_{n-1}$, $n \in \mathbb{N}$, $n \ge 2$.

Zeigen Sie, dass es eindeutig bestimmte reelle Zahlen c_1, c_2 gibt mit

$$a_n = c_1 \cdot 2^{n+2} + c_2 \cdot (-3)^n$$
 für alle $n \in \mathbb{N}_0$.

Bestimmen Sie c_1 und c_2 .

Aufgabe 8) (Ungleichungen I) (1+1+2=4 Punkte)

- (a) Für welche $k \in \mathbb{N}$ gilt $k! > 2^k$? (Induktionsbeweis)
- (b) Zeigen Sie (direkt): $\binom{n}{k}\cdot\frac{1}{n^k}\leq\frac{1}{k!}$ für $n,k\in\mathbb{N}_0$ mit $0\leq k\leq n.$
- (c) Zeigen Sie: $2 \le \left(1 + \frac{1}{n}\right)^n \le \sum_{k=0}^n \frac{1}{k!} < 3$ für $n \in \mathbb{N}$.

Hinweis: Binomialsatz, Teile (a), (b) und die geometrische Summenformel.

Aufgabe 9) (Ungleichungen II) (4 Punkte)

Bestimmen Sie jeweils die Menge aller $x \in \mathbb{R}$, welche die jeweilige Ungleichung erfüllen:

(i)
$$\frac{2}{x^2 - 16} < \frac{1}{64}$$
 (ii) $\frac{|x - 1|}{|x + 1|} \ge 1$ (iii) $\frac{1 - |x - 2|}{|x - 3|} < \frac{1}{2}$