

Problem Set 4: Returns to Schooling

Andreas Fischeneder & Tom Schwaiger

Labor Economics Winter Term 2025/26

Q1: Questions on Ashenfelter and Krueger (1994)

(a) Research question and difficulties

RQ:

What are the (wage) returns to schooling?

Difficulties:

- Omitted Variable Bias (OVB): Unobserved variables such as ability or work ethic influence both education and wages
- Measurement error in years of schooling

Q1: Questions on Ashenfelter and Krueger (1994)

(b) Approach by Ashenfelter & Krueger

Address problems by:

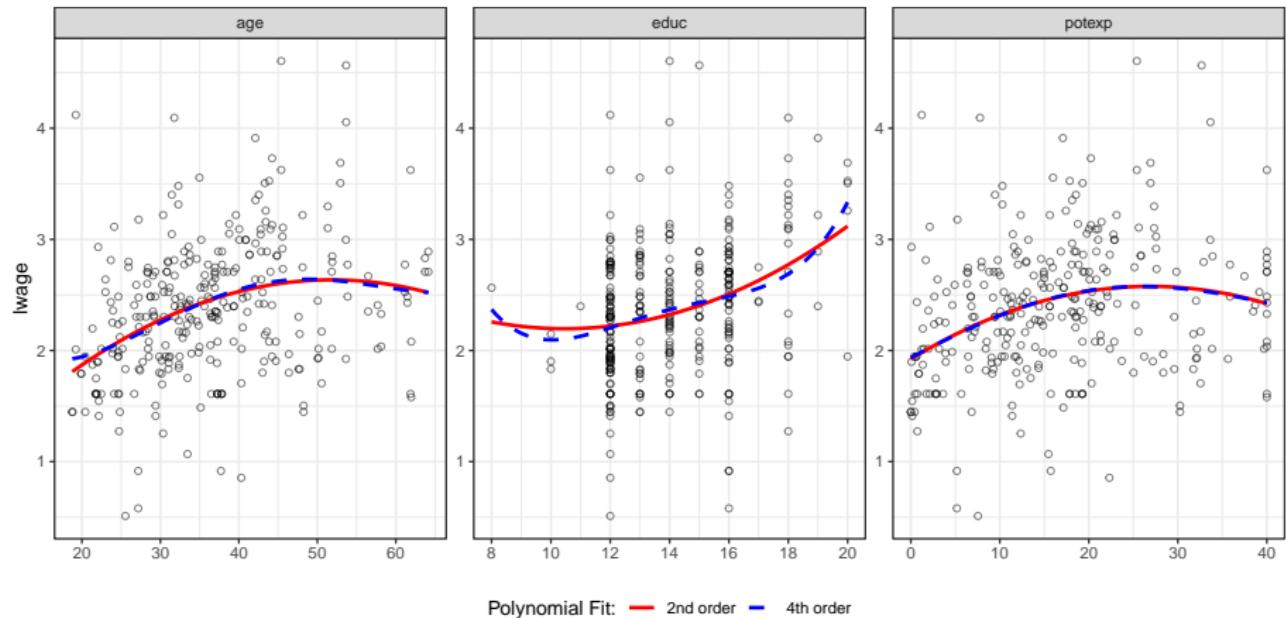
- Omitted Variable Bias (OVB): use differences within pairs of identical twins
⇒ addresses omitted variables due to family background and genetic endowment (constant)
- Measurement error: Instrumenting difference in years of schooling reported by one twin by difference reported by other twin

Is this approach convincing?

- Internal validity:
 - ▶ Rules out OVB bias due to variables that are constant across twins
 - ▶ But: ΔS due to individual-specific variables that also influences Δy ? (e.g., health shock)
- External validity: Returns to schooling for identical twins may not be representative for whole population

Q1: Questions on Ashenfelter and Krueger (1994)

(c) Key Results


- Main Results:
 - ▶ Estimates for returns to schooling between 8 and 16%
 - ▶ Estimate larger when using first differences compared to individual level data
 - ▶ Estimates notably larger with IV
 - ▶ Unobserved ability weakly negatively correlated to schooling level completed
- Implication: Bias due to measurement error bigger issue than OVB
- Effect magnitude of IV FD estimate quite large (compared to other twin studies and research designs)

Results convincing?

- General qualitative direction of their results convincing
- Slightly negative correlation between unobserved ability and schooling level seems dubious

Q2: Descriptives

Figure 1: Wage Profiles

Q3: OLS

Table 1: OLS Results

	DV: Log Wage
Education	0.084*** (0.014)
Age	0.088*** (0.019)
Age Squared	-0.001*** (0.0002)
Male	0.204** (0.063)
White	-0.410** (0.127)
Constant	-0.471 (0.426)
Observations	298
R ²	0.272
Adjusted R ²	0.260

Note:

*p<0.05; **p<0.01; ***p<0.001

Key Take-Aways

- Age:

- ▶ Non-linear effect on income
- ▶ Matches the concavity of the age-life-cycle profile
- ▶ Peak at ≈ 50 years
- ▶ Consistent with Fig. 1

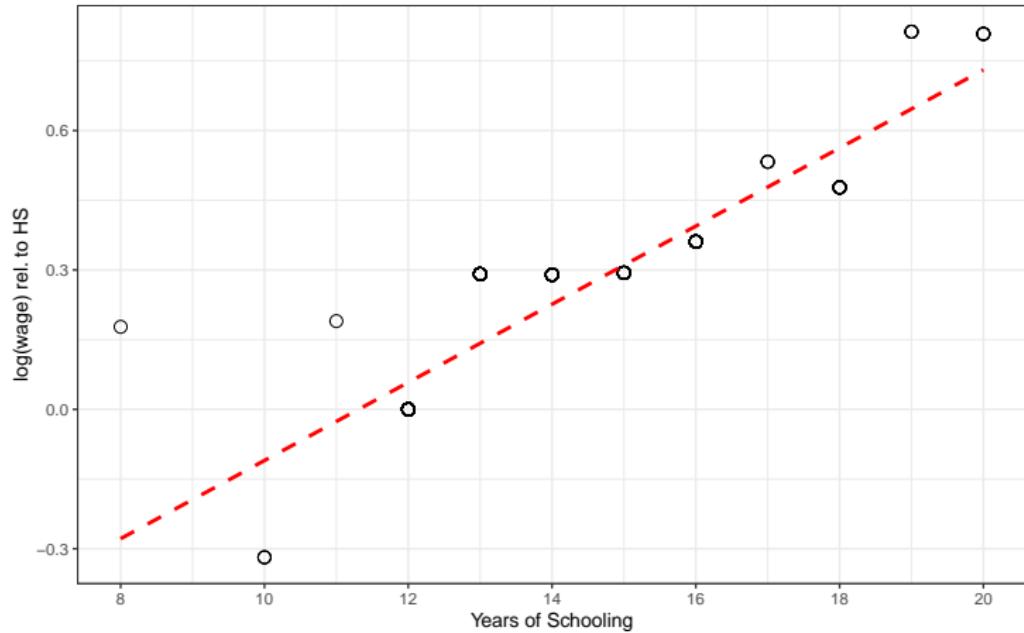
- Education:

- ▶ $\hat{\beta}_{\text{educ}} = 0.084$: identical to Ashenfelter and Krueger (1994)
- ▶ Potential bias due to (1) OVB and (2) measurement error

Q4: Standard Errors

Table 2: OLS with Alternative SEs

	DV: Log Wage		
	Baseline (1)	HC1 Robust (2)	Clustered (famid) (3)
Education	0.084*** (0.014)	0.084*** (0.015)	0.084*** (0.015)
Age	0.088*** (0.019)	0.088*** (0.020)	0.088*** (0.020)
Age Squared	-0.001*** (0.0002)	-0.001*** (0.0002)	-0.001*** (0.0002)
Male	0.204** (0.063)	0.204*** (0.062)	0.204** (0.062)
White	-0.410** (0.127)	-0.410*** (0.117)	-0.410** (0.125)
Constant	-0.471 (0.426)	-0.471 (0.496)	-0.471 (0.513)
Observations	298	298	298
R ²	0.272	0.272	0.272
Adjusted R ²	0.260	0.260	0.260


Note:

* p<0.05; ** p<0.01; *** p<0.001

- Assumption of homoskedastic and independent errors is likely violated in the twin data
- HC1: corrects for heteroskedasticity
- Family cluster: accounts for correlation of unobserved shocks within twin pairs

Q5: (Non-)Linearity of Returns to Education

Figure 2: Returns to Education rel. to High School

Q6: OLS vs. FE

Table 3: OLS vs. FE

	DV: Log Wage	
	Baseline OLS (1)	Family FE (2)
Education	0.084*** (0.014)	0.089*** (0.024)
Family FE		X
Observations	298	298
R ²	0.272	0.798
Adjusted R ²	0.260	0.594

Note: *p<0.05; **p<0.01; ***p<0.001

- only slight differences
- Economic reasons: family traits that are positively correlated with both education and wages are filtered out

Q7: FE vs. FD

$$\begin{aligned}\log(y_{1f}) - \log(y_{2f}) &= (\beta S_{1f} + \alpha_f + u_{1f}) - (\beta S_{2f} + \alpha_f + u_{2f}) \\ \Rightarrow \Delta \log(y_f) &= \beta \Delta S_f + \Delta u_f\end{aligned}$$

Table 4: FE vs. FD

	DV: Log Wage	
	Family FE (1)	Family FD (2)
Education	0.089*** (0.024)	0.089*** (0.024)
Observations	298	149
R ²	0.798	0.087
Adjusted R ²	0.594	0.080

Note:

*p<0.05; **p<0.01; ***p<0.001

- Theoretically, $\beta_{FE} = \beta_{FD} = \beta$
- Identical estimates: $\hat{\beta}_{FE} = \hat{\beta}_{FD}$
- Note: need to exclude intercept in R to run correct FD model!

References

- Ashenfelter, O., & Krueger, A. (1994). Estimates of the economic return to schooling from a new sample of twins. *The American Economic Review*, 84(5), 1157–1173.