Klausur zu Ökonometrie (Master)

Technische Universität Dortmund	Fakultät Wirtschaftswissenschaften	1. Oktober 2024
Bitte tragen Sie Ihre Daten sorgfältig und	l leserlich ein:	
Matrikelnummer	Nachname	
Studiengang	Vorname	
Bearbeitungshinweise:		
Diese Klausur besteht aus fünf Aufgaben, Alle Antworten sind zu begründen. Bitte verwenden sie einen Kugelschreiber		
	ind als Hilfsmittel für diese Klausur zugelass je 18 Punkte zu erreichen.	en.
Die Bearbeitungszeit beträgt 90 Minuten		
Erlaubte Hilfsmittel:		
• Taschenrechner (nicht programmier	rbar)	
• Ein DIN-A4 Blatt mir eigenen hand	lschriftlichen Notizen (Vorder- und Rückseit	e)
Viel Erfolg!		
Vom Prüfer auszufüllen:	Punkte Aufgal	be 1 / 18
	Punkte Aufgal	be 2 / 18
	Punkte Aufgal	be 3 / 18
	Punkte Aufgal	be 4 / 18
	Punkte Aufgal	be 5 / 18
Gesamtpunkte / 9	90 Note :	

Es seien die Beobachtungen $\mathbf{y} \in \mathbb{R}^n$ und $X \in \mathbb{R}^{n \times k+1}$ verfügbar, wobei \mathbf{y} der Regressand und X die Regressormatrix sei.

In der Vorlesung wurden die Annahmen MLR 1, MLR 3, MLR 4 und MLR 5 zur Analyse der linearen Regression mit k+1 Regressoren (inklusive Konstante) getroffen.

- a) Wie lauten diese vier Annahmen?
- b) Geben Sie für jede dieser vier Annahmen ein Beispiel, welches die entsprechende Annahme verletzt.
- c) Wie lautet der kleinste Quadrate Schätzer $\hat{\beta}$? Argumentieren Sie, welche der obigen Annahmen notwendig für die Spezifikation und Existenz dieses Schätzers sind.
- d) Welchen Erwartungswert und welche Varianz-Kovarianz-Matrix hat der Schätzer $\hat{\beta}$? Argumentieren Sie, welche der obigen Annahmen benötigt werden, um den Erwartungswert und die Varianz-Kovarianzmatrix dieses Schätzers zu bestimmen.

Dieser Aufgabe liegt der in der Vorlesung und Übung analysierte Datensatz wage1 zugrunde. Ihnen steht folgender Output zur Verfügung:

Modell 1: KQ, benutze die Beobachtungen 1–526 Abhängige Variable: wage

	Koeffizi	ent	Std. F	ehler	t-Quotient	p-Wer	t
const	-3,3905	4	0,766	566	-4,423	0,0000)
exper	0,0700	954	0,0109	9776	6,385	0,0000)
educ	0,6442	72	0,0538	8061	11,97	0,0000)
Mittel abhängig	ge Var.	5,89	6103	Stdabw	ı. abhängige	Var.	3,693086
Summe quad. F	Residuen	5548	3,160	Stdfehl	er Regressio	n	3,257044
R^2		0,22	5162	Korrigi	ertes \mathbb{R}^2		0,222199
F(2,523)		75,9	8998	P-Wert	$\mathfrak{c}(F)$		1,07e-29

- a) Wie sind die Werte in der Spalte "t-Quotient" zu interpretieren? Welche Formel liegt ihnen zugrunde?
- b) Welchen Schluss können Sie in Bezug auf den Wert des t-Quotienten des Regressors educ ziehen?
- c) Wie viel Prozent der Streuung von wage wird durch die Streuung von exper und educ erklärt? Erklären Sie auf Grundlage welchen Werts der Tabelle Sie Ihre Aussage treffen und wie dieser Wert berechnet wird!
- d) Welche statistische Kennzahl wird mit SST bezeichnet und wie lautet dieser Wert im vorliegenden Fall? Es gibt zwei Möglichkeiten, diesen auf Grundlage des vorliegenden Outputs zu berechnen. Geben Sie mindestens eine Möglichkeit an!

Es sei Z und Y beliebige Zufallsvariablen mit $|\mathbb{E}[Z]|, |\mathbb{E}[Y]| < \infty$ und $\mathbb{E}[Z^2], \mathbb{E}[Y^2] < \infty$.

a) Definieren Sie die Varianz von Z, Var(Z), und die Kovarianz von Z und Y, Cov(Z,Y), als Erwartungswerte! Betrachten Sie nun das lineare Regressionsmodell unter den Annahmen MLR 1 bis MLR 6:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

Es bezeichnen $\hat{\beta}_1$ und $\hat{\beta}_2$ die OLS-Schätzer für β_1 und β_2 .

Es bezeichnen $\sigma_1^2 = Var(\hat{\beta}_1)$, $\sigma_2^2 = Var(\hat{\beta}_2)$ und $\sigma_{12}^2 = Cov(\hat{\beta}_1, \hat{\beta}_2)$.

Um die Nullhypothese $\beta_1 + 2\beta_2 = 2$ zu testen wird der Schätzer $\hat{\theta} = \hat{\beta}_1 + 2\hat{\beta}_2$ definiert.

- b) Bestimmen Sie $Var(\hat{\theta})$ in Ausdrücken von σ_1^2 , σ_2^2 und σ_{12}^2 . Wie lautet der Standardfehler $se(\hat{\theta})$ von $\hat{\theta}$?
- c) Bestimmen Sie die t-Statistik für die Nullhypothese $\mathbb{E}[\hat{\theta}]=2!$
- d) Definieren Sie $\theta=\beta_1+2\beta_2$ und $z=x_2-2x_1$. Stellen Sie eine Regressionsgleichung mit den Parametern β_0,θ,β_2 und β_3 und den Regressoren x_1 , z und x_3 auf, welche äquivalent zur obigen Regressionsgleichung ist und deren OLS-Schätzung Ihnen erlaubt $se(\hat{\theta})$ direkt abzulesen.

- a) Was bedeutet der Ausdruck "Heteroskedastizität" in Bezug auf die unbeobachtbaren Störterme u_i , $i=1,\ldots,n$? Welche der Annahmen MLR 1 bis MLR 6 wird oder werden durch Heteroskedastizität verletzt?
- b) Warum sind heteroskedastische Störterme in Bezug auf das OLS-Schätzverfahren problematisch?
- c) Nennen Sie ein Testverfahren, mit welchem Heteroskedastizität festgestellt werden kann und erläutern Sie kurz dessen Vorgehen!

Es sei angenommen, dass die auf X bedingte Varianz-Kovarianz-Matrix der Störterme bekannt und wie folgt gegeben sei:

$$\Sigma\left(\mathbf{u}|X\right) = \sigma^{2} \begin{pmatrix} \frac{\sigma_{1}^{2}}{\sigma^{2}} & 0 & \dots & 0\\ 0 & \frac{\sigma_{2}^{2}}{\sigma^{2}} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \frac{\sigma_{n}^{2}}{\sigma^{2}} \end{pmatrix}$$

d) Wie müssten der Regressand y und die Regressoren X transformiert werden, so dass OLS anwendbar ist und Hypothesen an die Parameter valide getestet werden können? Zeigen Sie, dass die transformierten Störterme einen Erwartungswert von null haben und homoskedastisch sind!

In einem Zeitreihenmodell sei der unbeobachtbare Störterm u_t , $t=1,\ldots,n$ ein autoregressiver Prozess erster Ordnung, kurz AR(1).

- a) Welche Formel definiert den AR(1)-Prozess u_t für ein gegebenes u_0 ?
- b) Unter welchen Bedingungen ist der AR(1)-Prozess $\{u_t\}_{t=1}^n$ stationär?
- c) Welche der Annahmen MLR 1 bis MLR 6 ist oder sind verletzt? Warum ist dies in Bezug auf das OLS-Schätzverfahren problematisch?
- d) Nehmen Sie an, die Korrelation zwischen den Störtermen u_t und u_{t-1} sei bekannt und durch den Wert ρ gegeben. Wie müssen der Regressand \mathbf{y} und die Regressoren X transformiert werden, so dass OLS anwendbar ist und Hypothesen an die Parameter valide getestet werden können? Zeigen Sie, dass die transformierten Störterme einen Erwartungswert von null haben und seriell unkorreliert sind!

Kritische Werte der t-Verteilung

		Signifikanzniveau							
eins	eitig:	10%	5%	2,5%	1%	0,5%			
zweis	zweiseitig:		10%	5%	2%	1%			
Freiheits-	1	3,078	6,314	12,706	31,821	63,657			
grade	2	1,886	2,920	4,303	6,965	9,925			
	3	1,638	2,353	3,182	4,541	5,841			
	4	1,533	2,132	2,776	3,747	4,604			
	5	1,476	2,015	2,571	3,365	4,032			
	6	1,440	1,943	2,447	3,143	3,707			
	7	1,415	1,895	2,365	2,998	3,499			
	8	1,397	1,860	2,306	2,896	3,355			
	9	1,383	1,833	2,262	2,821	3,250			
	10	1,372	1,812	2,228	2,764	3,169			
	11	1,363	1,796	2,201	2,718	3,106			
	12	1,356	1,782	2,179	2,681	3,055			
	13	1,350	1,771	2,160	2,650	3,012			
	14	1,345	1,761	2,145	2,624	2,977			
	15	1,341	1,753	2,131	2,602	2,947			
	16	1,337	1,746	2,120	2,583	2,921			
	17	1,333	1,740	2,110	2,567	2,898			
	18	1,330	1,734	2,101	2,552	2,878			
	19	1,328	1,729	2,093	2,539	2,861			
	20	1,325	1,725	2,086	2,528	2,845			
	21	1,323	1,721	2,080	2,518	2,831			
	22	1,321	1,717	2,074	2,508	2,819			
	23	1,319	1,714	2,069	2,500	2,807			
	24	1,318	1,711	2,064	2,492	2,797			
	25	1,316	1,708	2,060	2,485	2,787			
	26	1,315	1,706	2,056	2,479	2,779			
	27	1,314	1,703	2,052	2,473	2,771			
	28	1,313	1,701	2,048	2,467	2,763			
	29	1,311	1,699	2,045	2,462	2,756			
	30	1,310	1,697	2,042	2,457	2,750			
	40 60	1,303	1,684	2,021	2,423	2,704			
	60	1,296	1,671	2,000	2,390	2,660			
	90	1,291	1,662	1,987	2,368	2,632			
	120	1,289	1,658	1,980	2,358	2,617			
	∞	1,282	1,645	1,960	2,326	2,576			

Kritische Werte der F-Verteilung zum Signifikanzniveau von 1%

		Anzahl der Restriktionen									
		1	2	3	4	5	6	7	8	9	10
n-k-1	10	10,04	7,56	6,55	5,99	5,64	5,39	5,20	5,06	4,94	4,85
	11	9,65	7,21	6,22	5,67	5,32	5,07	4,89	4,74	4,63	4,54
	12	9,33	6,93	5,95	5,41	5,06	4,82	4,64	4,50	4,39	4,30
	13	9,07	6,70	5,74	5,21	4,86	4,62	4,44	4,30	4,19	4,10
	14	8,86	6,51	5,56	5,04	4,69	4,46	4,28	4,14	4,03	3,94
	15	8,68	6,36	5,42	4,89	4,56	4,32	4,14	4,00	3,89	3,80
	16	8,53	6,23	5,29	4,77	4,44	4,20	4,03	3,89	3,78	3,69
	17	8,40	6,11	5,18	4,67	4,34	4,10	3,93	3,79	3,68	3,59
	18	8,29	6,01	5,09	4,58	4,25	4,01	3,84	3,71	3,60	3,51
	19	8,18	5,93	5,01	4,50	4,17	3,94	3,77	3,63	3,52	3,43
	20	8,10	5,85	4,94	4,43	4,10	3,87	3,70	3,56	3,46	3,37
	21	8,02	5,78	4,87	4,37	4,04	3,81	3,64	3,51	3,40	3,31
	22	7,95	5,72	4,82	4,31	3,99	3,76	3,59	3,45	3,35	3,26
	23	7,88	5,66	4,76	4,26	3,94	3,71	3,54	3,41	3,30	3,21
	24	7,82	5,61	4,72	4,22	3,90	3,67	3,50	3,36	3,26	3,17
	25	7,77	5,57	4,68	4,18	3,85	3,63	3,46	3,32	3,22	3,13
	26	7,72	5,53	4,64	4,14	3,82	3,59	3,42	3,29	3,18	3,09
	27	7,68	5,49	4,60	4,11	3,78	3,56	3,39	3,26	3,15	3,06
	28	7,64	5,45	4,57	4,07	3,75	3,53	3,36	3,23	3,12	3,03
	29	7,60	5,42	4,54	4,04	3,73	3,50	3,33	3,20	3,09	3,00
	30	7,56	5,39	4,51	4,02	3,70	3,47	3,30	3,17	3,07	2,98
	40	7,31	5,18	4,31	3,83	3,51	3,29	3,12	2,99	2,89	2,80
	60	7,08	4,98	4,13	3,65	3,34	3,12	2,95	2,82	2,72	2,63
	90	6,93	4,85	4,01	3,54	3,23	3,01	2,84	2,72	2,61	2,52
	120	6,85	4,79	3,95	3,48	3,17	2,96	2,79	2,66	2,56	2,47
	∞	6,63	4,61	3,78	3,32	3,02	2,80	2,64	2,51	2,41	2,32

Kritische Werte der F-Verteilung zum Signifikanzniveau von 5%

		Anzahl der Restriktionen									
		1	2	3	4	5	6	7	8	9	10
n - k - 1	10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98
	11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85
	12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75
	13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67
	14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60
	15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54
	16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49
	17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45
	18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41
	19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38
	20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35
	21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32
	22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30
	23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,27
	24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25
	25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24
	26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27	2,22
	27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25	2,20
	28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19
	29	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22	2,18
	30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16
	40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12	2,08
	60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04	1,99
	90	3,95	3,10	2,71	2,47	2,32	2,20	2,11	2,04	1,99	1,94
	120	3,92	3,07	2,68	2,45	2,29	2,17	2,09	2,02	1,96	1,91
	∞	3,84	3,00	2,60	2,37	2,21	2,10	2,01	1,94	1,88	1,83

Kritische Werte der χ^2 -Verteilung

		Signifikanzniveau							
		10% 5% 1%							
Freiheits-	1	2,71	3,84	6,63					
Grade	2	4,61	5,99	9,21					
	3	6,25	7,81	11,34					
	4	7,78	9,49	13,28					
	5	9,24	11,07	15,09					
	6	10,64	12,59	16,81					
	7	12,02	14,07	18,48					
	8	13,36	15,51	20,09					
	9	14,68	16,92	21,67					
	10	15,99	18,31	23,21					
	11	17,28	19,68	24,72					
	12	18,55	21,03	26,22					
	13	19,81	22,36	27,69					
	14	21,06	23,68	29,14					
	15	22,31	25,00	30,58					
	16	23,54	26,30	32,00					
	17	24,77	27,59	33,41					
	18	25,99	28,87	34,81					
	19	27,20	30,14	36,19					
	20	28,41	31,41	37,57					
	21	29,62	32,67	38,93					
	22	30,81	33,92	40,29					
	23	32,01	35,17	41,64					
	24	33,20	36,42	42,98					
	25	34,38	37,65	44,31					
	26	35,56	38,89	45,64					
	27	36,74	40,11	46,96					
	28	37,92	41,34	48,28					
	29	39,09	42,56	49,59					
	30	40,26	43,77	50,89					