## Klausur zu Ökonometrie (Master)

| Technische Universität Dortmund            | Fakultät Wirtschaftswissenschaften                 | 4. Oktober 2022 |
|--------------------------------------------|----------------------------------------------------|-----------------|
| Bitte tragen sie ihre Daten sorgfältig und | d leserlich ein:                                   |                 |
| Matrikelnummer                             | Nachname                                           |                 |
| Studiengang                                | Vorname                                            |                 |
| Bearbeitungshinweise:                      |                                                    |                 |
| Diese Klausur besteht aus fünf Aufgaber    | n, welche alle zu bearbeiten sind.                 |                 |
| Bitte verwenden sie einen Kugelschreiber   | r oder nicht zu starken Filzstift.                 |                 |
| Nicht-programmierbare Taschenrechner       | sind als Hilfsmittel für diese Klausur zugelassen. |                 |
| Für jede der fünf Aufgaben sind maxima     | l je 18 Punkte zu erreichen.                       |                 |
| Bei 36 von maximal 90 erreichbaren Pun     | kten ist die Klausur bestanden.                    |                 |
| Die Bearbeitungszeit beträgt 90 Minuter    | 1.                                                 |                 |
| Viel Erfolg!                               |                                                    |                 |
|                                            |                                                    |                 |
|                                            |                                                    |                 |
|                                            |                                                    |                 |
|                                            |                                                    |                 |
|                                            |                                                    |                 |
| Vom Prüfer auszufüllen:                    |                                                    |                 |
|                                            | Punkte Aufgabe                                     | 1 / 18          |
|                                            |                                                    | /               |
|                                            |                                                    |                 |
|                                            | Punkte Aufgabe                                     | 2 / 18          |
|                                            |                                                    |                 |
|                                            | Dunkta Aufraha                                     | 2 / 10          |
|                                            | Punkte Aufgabe                                     | 3 / 18          |
|                                            |                                                    |                 |
|                                            | Punkte Aufgabe                                     | 4 / 18          |
|                                            |                                                    |                 |
|                                            |                                                    |                 |
|                                            | Punkte Aufgabe                                     | <b>5</b> / 18   |
|                                            |                                                    |                 |
| Gosamtnunkto /                             | 90 Note:                                           |                 |

| a) Benennen sie die Annahmen MLR 1, MLR 3, MLR 4 und MLR 5 aus der Vorlesung.                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MLR 1                                                                                                                                                                                                                                                   |
| MLR 3                                                                                                                                                                                                                                                   |
| ALR 4                                                                                                                                                                                                                                                   |
| MLR 5                                                                                                                                                                                                                                                   |
| b) Erklären sie die Bedeutung des Akronyms BLUE.                                                                                                                                                                                                        |
| E                                                                                                                                                                                                                                                       |
| U                                                                                                                                                                                                                                                       |
| L                                                                                                                                                                                                                                                       |
| В                                                                                                                                                                                                                                                       |
| c) Geben sie einen erwartungstreuen Schätzer $\hat{\sigma}^2$ für die Varianz $\sigma^2$ der Störterme $u_i,\ i=1,\dots,n$ an. Nehmen sie hierbei an, dass MLR 1, MLR 3, MLR 4 und MLR 5 gelten. Ist $\hat{\sigma}^2$ BLUE? Begründen sie ihre Antwort. |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |

Gegeben sei folgende Ausgabe einer Regressionsanalyse:

Modell 1: KQ, benutze die Beobachtungen 1–1388 (n=1191) Fehlende oder unvollständige Beobachtungen entfernt: 197 Abhängige Variable: bwght

|          | Koeffizient | Std. Fehler | $t	ext{-}Quotient$ | p-Wert |
|----------|-------------|-------------|--------------------|--------|
| const    | 114,524     | 3,72845     | 30,72              | 0,0000 |
| cigs     | -0,595936   | 0,110348    | -5,401             | 0,0000 |
| parity   | 1,78760     | 0,659406    | 2,711              | 0,0068 |
| faminc   | 0,0560414   | 0,0365616   | 1,533              | 0,1256 |
| motheduc | -0,370450   | 0,319855    | -1,158             | 0,2470 |
| fatheduc | 0,472394    | 0,282643    | 1,671              | 0,0949 |

| Mittel abhängige Var. | 119,5298  | Stdabw. abhängige Var.      | 20,14124 |
|-----------------------|-----------|-----------------------------|----------|
| Summe quad Residuen   | 464041,1  | Stdfehler Regression        | 19,78878 |
| $R^2$                 | 0,038748  | Korrigiertes $\mathbb{R}^2$ | 0,034692 |
| F(5, 1185)            | 9,553500  | $P	ext{-}Wert(F)$           | 5,99e-09 |
| Log-Likelihood        | -5242,220 | Akaike-Kriterium            | 10496,44 |
| Schwarz-Kriterium     | 10526,94  | Hannan-Quinn                | 10507,93 |

Die Variablen haben folgende Bedeutungen:

bwght: Geburtsgewicht in Unzen (1 Unze  $\approx$  28.3 Gramm), cigs: Zigaretten pro Tag während Schwangerschaft, parity: 1., 2., 3., ... Kind, faminc: Familieneinkommen in 1000\$ in 1988, motheduc / fatheduc: #Jahre Bildung der Mutter / des Vaters

- a) Betrachten sie folgende Aussage: "Zwei zusätzliche Zigaretten pro Tag während der Schwangerschaft gehen einher mit einer durchschnittlichen Reduktion des Geburtsgewichts um eine Unze, wenn alle anderen Faktoren gleich bleiben." Stellen sie die entsprechende Nullhypothese auf und erläutern sie das anzuwendende Testverfahren. Zu welchem Ergebnis kommen sie?
- b) Führen sie einen globalen F-Test durch und erläutern sie dabei ihr Vorgehen und ihre Schlussfolgerung.
- c) Welche Bedeutung hat der p-Wert von 0,1256 für faminc?
- d) sie führen eine zweite Regression durch, bei welcher sie auf die Variablen *motheduc* und *fatheduc* verzichten. Die Summe der quadrierten Residuen des restringierten Modells beträgt 465166,8. Benutzen sie diese Informationen und eine geeignete Tabelle im Anhang dieser Klausur um zu testen, ob die Koeffizienten von *motheduc* und *fatheduc* gemeinsam signifikant von null verschieden sind. Erläutern sie hierbei ihr Vorgehen und ihre Schlussfolgerung.

Betrachten sie ein lineares Regressionsmodell unter den Annahmen MLR 1 bis MLR 6:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + u_i$$
,  $i = 1, \dots, n$ 

Es seien  $\hat{\beta}_0,~\hat{\beta}_1,\hat{\beta}_2$  und  $\hat{\beta}_3$  die OLS-Schätzer für die unbekannten Parameter  $\beta_0,\beta_1,\beta_2$  und  $\beta_3$ .

- a) Benennen sie  $var(\hat{\beta}_2-2\hat{\beta}_3)$  in Ausdrücken  $var(\hat{\beta}_2),\ var(\hat{\beta}_3)$  und  $cov(\hat{\beta}_2,\hat{\beta}_3).$
- **b)** Benennen sie die t-Statistik für die Hypothese  $H_0$ :  $\hat{\beta}_2 2\hat{\beta}_3 = 2$ . Verwenden sie hierfür die Ausdrücke  $\widehat{var}(\hat{\beta}_2), \ \widehat{var}(\hat{\beta}_3)$  und  $\widehat{cov}(\hat{\beta}_2, \hat{\beta}_3)$ .
- c) Definieren sie  $\theta=\beta_2-2\beta_3$  und  $\hat{\theta}=\hat{\beta}_2-2\hat{\beta}_3$ . Stellen sie eine Regressionsgleichung mit  $\beta_0,\beta_1,\theta$  und  $\beta_3$  auf, welche ihnen erlaubt,  $\hat{\theta}$  und den Standardfehler von  $\hat{\theta}$  aus den Regressionsergebnissen der Software abzulesen. Definieren sie ggf. einen weiteren Regressor  $z_i, i=1,\dots,n$ .

Es sei  ${\bf u}$  ein Zufallsvektor mit n Komponenten, welcher der Normalverteilung unterliege. Der Erwartungswert von  ${\bf u}$  betrage  $E[{\bf u}]={\bf 0}\in\mathbb{R}^n$  und die Varianz-Kovarianz-Matrix von  ${\bf u}$  sei durch  $var({\bf u})=\sigma^2\Omega$  gegeben, wobei  $\sigma^2$  ein positiver Skalar sei und  $\Omega\in\mathbb{R}^{n\times n}$  positiv definit symmetrisch sei. Es gelten außerdem die Annahmen MLR 1, MLR 3 und MLR 4.

Es gelte

$$y = X\beta + u$$
,

wobei  $X \in \mathbb{R}^{n \times (k+1)}$  eine bekannte und nicht stochastische Matrix mit vollen Spaltenrang und  $\beta \in \mathbb{R}^{k+1}$  ein unbekannter und nicht stochastischer Vektor seien.

- a) Geben sie E[y], var(y) und die Verteilung von y an.
  - $\bullet$  E[y]
  - *var*(**y**)
  - Verteilung von y:
- b) Betrachten sie nun  $\tilde{\boldsymbol{\beta}} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}$ y. Geben sie  $E[\tilde{\boldsymbol{\beta}}], var(\tilde{\boldsymbol{\beta}})$  und die Verteilung von  $\tilde{\boldsymbol{\beta}}$  an.
  - $E[\tilde{\boldsymbol{\beta}}]$
  - $var(\tilde{\boldsymbol{\beta}})$
  - Verteilung von  $\tilde{\boldsymbol{\beta}}$ :

Nehmen sie nun an, dass  $\Omega=diag(\boldsymbol{\omega})$ , wobei  $\boldsymbol{\omega}\in\mathbb{R}^n$  ein nicht-stochastischer Vektor sei.  $\Omega$  sei also eine ihnen bekannte Diagonalmatrix, deren i-te Komponente auf der Diagonale durch die i-te Komponente  $\omega_i$  von  $\boldsymbol{\omega}$  gegeben sei.

c) Beschreiben sie, wie die Daten  $\mathbf y$  und X zu transformieren sind, sodass bei gegebenen transformierten Daten  $\tilde{\mathbf y}$  und  $\tilde{X}$  der OLS-Schätzer  $\left(\tilde{X}'\tilde{X}\right)^{-1}\tilde{X}'\tilde{\mathbf y}$  BLUE ist.

Ihnen liegt der Datensatz wage1 der Vorlesung vor und sie führen eine OLS-Regression mit folgender Ausgabe durch:

Modell 1: KQ, benutze die Beobachtungen 1–526 Abhängige Variable: lwage

|       | Koeffizient | Std. Fehler | $t	ext{-}Quotient$ | p-Wert |
|-------|-------------|-------------|--------------------|--------|
| const | 0,216854    | 0,108595    | 1,997              | 0,0464 |
| educ  | 0,0979356   | 0,00762240  | 12,85              | 0,0000 |
| exper | 0.0103469   | 0.00155514  | 6,653              | 0,0000 |

| Mittel abhängige Var. | 1,623268  | Stdabw. abhängige Var       | 0,531538                |
|-----------------------|-----------|-----------------------------|-------------------------|
| Summe quad Residuen   | 111,3447  | Stdfehler Regression        | 0,461407                |
| $R^2$                 | 0,249343  | Korrigiertes $\mathbb{R}^2$ | 0,246473                |
| F(2,523)              | 86,86167  | $P	ext{-}Wert(F)$           | $2,\!68\mathrm{e}{-33}$ |
| Log-Likelihood        | -338,0094 | Akaike-Kriterium            | 682,0188                |
| Schwarz-Kriterium     | 694,8147  | Hannan-Quinn                | 687,0290                |

Die Variablen haben hierbei folgende Bedeutungen: lwage: log(wage), wobei wage den durchschnittlichen Stundenlohn bezeichnet. educ: Jahre Bildung, exper: Jahre Berufserfahrung

- a) Definieren sie reine Heteroskedastizität in Bezug auf die Störterme. Welche der Annahmen MLR 1 bis MLR 6 fordern Homoskedastizität der Störterme?
- b) Nennen sie eine Eigenschaft des OLS-Schätzers, die auch unter heteroskedastischen Störterme gültig ist und nennen sie eine Methode, welche in Bezug auf den OLS-Schätzer und Heteroskedastizität nicht valide ist.
- c) Erläutern sie, wie sie in Bezug auf die obige Regression vorgehen würden, um die Daten auf Homoskedastizität zu testen. Unter welchen Umständen würden sie die Nullhypothese homoskedastischer Störterme verwerfen?

## Kritische Werte der t-Verteilung

|            |             | Signifikanzniveau |       |        |        |        |  |  |  |
|------------|-------------|-------------------|-------|--------|--------|--------|--|--|--|
| eins       | eitig:      | 10%               | 5%    | 2,5%   | 1%     | 0,5%   |  |  |  |
| zweis      | zweiseitig: |                   | 10%   | 5%     | 2%     | 1%     |  |  |  |
| Freiheits- | 1           | 3,078             | 6,314 | 12,706 | 31,821 | 63,657 |  |  |  |
| grade      | 2           | 1,886             | 2,920 | 4,303  | 6,965  | 9,925  |  |  |  |
|            | 3           | 1,638             | 2,353 | 3,182  | 4,541  | 5,841  |  |  |  |
|            | 4           | 1,533             | 2,132 | 2,776  | 3,747  | 4,604  |  |  |  |
|            | 5           | 1,476             | 2,015 | 2,571  | 3,365  | 4,032  |  |  |  |
|            | 6           | 1,440             | 1,943 | 2,447  | 3,143  | 3,707  |  |  |  |
|            | 7           | 1,415             | 1,895 | 2,365  | 2,998  | 3,499  |  |  |  |
|            | 8           | 1,397             | 1,860 | 2,306  | 2,896  | 3,355  |  |  |  |
|            | 9           | 1,383             | 1,833 | 2,262  | 2,821  | 3,250  |  |  |  |
|            | 10          | 1,372             | 1,812 | 2,228  | 2,764  | 3,169  |  |  |  |
|            | 11          | 1,363             | 1,796 | 2,201  | 2,718  | 3,106  |  |  |  |
|            | 12          | 1,356             | 1,782 | 2,179  | 2,681  | 3,055  |  |  |  |
|            | 13          | 1,350             | 1,771 | 2,160  | 2,650  | 3,012  |  |  |  |
|            | 14          | 1,345             | 1,761 | 2,145  | 2,624  | 2,977  |  |  |  |
|            | 15          | 1,341             | 1,753 | 2,131  | 2,602  | 2,947  |  |  |  |
|            | 16          | 1,337             | 1,746 | 2,120  | 2,583  | 2,921  |  |  |  |
|            | 17          | 1,333             | 1,740 | 2,110  | 2,567  | 2,898  |  |  |  |
|            | 18          | 1,330             | 1,734 | 2,101  | 2,552  | 2,878  |  |  |  |
|            | 19          | 1,328             | 1,729 | 2,093  | 2,539  | 2,861  |  |  |  |
|            | 20          | 1,325             | 1,725 | 2,086  | 2,528  | 2,845  |  |  |  |
|            | 21          | 1,323             | 1,721 | 2,080  | 2,518  | 2,831  |  |  |  |
|            | 22          | 1,321             | 1,717 | 2,074  | 2,508  | 2,819  |  |  |  |
|            | 23          | 1,319             | 1,714 | 2,069  | 2,500  | 2,807  |  |  |  |
|            | 24          | 1,318             | 1,711 | 2,064  | 2,492  | 2,797  |  |  |  |
|            | 25          | 1,316             | 1,708 | 2,060  | 2,485  | 2,787  |  |  |  |
|            | 26          | 1,315             | 1,706 | 2,056  | 2,479  | 2,779  |  |  |  |
|            | 27          | 1,314             | 1,703 | 2,052  | 2,473  | 2,771  |  |  |  |
|            | 28          | 1,313             | 1,701 | 2,048  | 2,467  | 2,763  |  |  |  |
|            | 29          | 1,311             | 1,699 | 2,045  | 2,462  | 2,756  |  |  |  |
|            | 30          | 1,310             | 1,697 | 2,042  | 2,457  | 2,750  |  |  |  |
|            | 40          | 1,303             | 1,684 | 2,021  | 2,423  | 2,704  |  |  |  |
|            | 60          | 1,296             | 1,671 | 2,000  | 2,390  | 2,660  |  |  |  |
|            | 90          | 1,291             | 1,662 | 1,987  | 2,368  | 2,632  |  |  |  |
|            | 120         | 1,289             | 1,658 | 1,980  | 2,358  | 2,617  |  |  |  |
|            | $\infty$    | 1,282             | 1,645 | 1,960  | 2,326  | 2,576  |  |  |  |

## Kritische Werte der F-Verteilung zum Signifikanzniveau von 1%

|       |          |       |      |      | A I  |         |      |      |      |      |      |
|-------|----------|-------|------|------|------|---------|------|------|------|------|------|
|       |          |       |      |      |      | l der R |      |      |      |      |      |
|       |          | 1     | 2    | 3    | 4    | 5       | 6    | 7    | 8    | 9    | 10   |
| n-k-1 | 10       | 10,04 | 7,56 | 6,55 | 5,99 | 5,64    | 5,39 | 5,20 | 5,06 | 4,94 | 4,85 |
|       | 11       | 9,65  | 7,21 | 6,22 | 5,67 | 5,32    | 5,07 | 4,89 | 4,74 | 4,63 | 4,54 |
|       | 12       | 9,33  | 6,93 | 5,95 | 5,41 | 5,06    | 4,82 | 4,64 | 4,50 | 4,39 | 4,30 |
|       | 13       | 9,07  | 6,70 | 5,74 | 5,21 | 4,86    | 4,62 | 4,44 | 4,30 | 4,19 | 4,10 |
|       | 14       | 8,86  | 6,51 | 5,56 | 5,04 | 4,69    | 4,46 | 4,28 | 4,14 | 4,03 | 3,94 |
|       | 15       | 8,68  | 6,36 | 5,42 | 4,89 | 4,56    | 4,32 | 4,14 | 4,00 | 3,89 | 3,80 |
|       | 16       | 8,53  | 6,23 | 5,29 | 4,77 | 4,44    | 4,20 | 4,03 | 3,89 | 3,78 | 3,69 |
|       | 17       | 8,40  | 6,11 | 5,18 | 4,67 | 4,34    | 4,10 | 3,93 | 3,79 | 3,68 | 3,59 |
|       | 18       | 8,29  | 6,01 | 5,09 | 4,58 | 4,25    | 4,01 | 3,84 | 3,71 | 3,60 | 3,51 |
|       | 19       | 8,18  | 5,93 | 5,01 | 4,50 | 4,17    | 3,94 | 3,77 | 3,63 | 3,52 | 3,43 |
|       | 20       | 8,10  | 5,85 | 4,94 | 4,43 | 4,10    | 3,87 | 3,70 | 3,56 | 3,46 | 3,37 |
|       | 21       | 8,02  | 5,78 | 4,87 | 4,37 | 4,04    | 3,81 | 3,64 | 3,51 | 3,40 | 3,31 |
|       | 22       | 7,95  | 5,72 | 4,82 | 4,31 | 3,99    | 3,76 | 3,59 | 3,45 | 3,35 | 3,26 |
|       | 23       | 7,88  | 5,66 | 4,76 | 4,26 | 3,94    | 3,71 | 3,54 | 3,41 | 3,30 | 3,21 |
|       | 24       | 7,82  | 5,61 | 4,72 | 4,22 | 3,90    | 3,67 | 3,50 | 3,36 | 3,26 | 3,17 |
|       | 25       | 7,77  | 5,57 | 4,68 | 4,18 | 3,85    | 3,63 | 3,46 | 3,32 | 3,22 | 3,13 |
|       | 26       | 7,72  | 5,53 | 4,64 | 4,14 | 3,82    | 3,59 | 3,42 | 3,29 | 3,18 | 3,09 |
|       | 27       | 7,68  | 5,49 | 4,60 | 4,11 | 3,78    | 3,56 | 3,39 | 3,26 | 3,15 | 3,06 |
|       | 28       | 7,64  | 5,45 | 4,57 | 4,07 | 3,75    | 3,53 | 3,36 | 3,23 | 3,12 | 3,03 |
|       | 29       | 7,60  | 5,42 | 4,54 | 4,04 | 3,73    | 3,50 | 3,33 | 3,20 | 3,09 | 3,00 |
|       | 30       | 7,56  | 5,39 | 4,51 | 4,02 | 3,70    | 3,47 | 3,30 | 3,17 | 3,07 | 2,98 |
|       | 40       | 7,31  | 5,18 | 4,31 | 3,83 | 3,51    | 3,29 | 3,12 | 2,99 | 2,89 | 2,80 |
|       | 60       | 7,08  | 4,98 | 4,13 | 3,65 | 3,34    | 3,12 | 2,95 | 2,82 | 2,72 | 2,63 |
|       | 90       | 6,93  | 4,85 | 4,01 | 3,54 | 3,23    | 3,01 | 2,84 | 2,72 | 2,61 | 2,52 |
|       | 120      | 6,85  | 4,79 | 3,95 | 3,48 | 3,17    | 2,96 | 2,79 | 2,66 | 2,56 | 2,47 |
|       | $\infty$ | 6.63  | 4.61 | 3.78 | 3.32 | 3.02    | 2.80 | 2.64 | 2.51 | 2.41 | 2.32 |

## Kritische Werte der F-Verteilung zum Signifikanzniveau von 5%

|           |          | Anzahl der Restriktionen |      |      |      |      |      |      |      |      |      |
|-----------|----------|--------------------------|------|------|------|------|------|------|------|------|------|
|           |          | 1                        | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
| n - k - 1 | 10       | 4,96                     | 4,10 | 3,71 | 3,48 | 3,33 | 3,22 | 3,14 | 3,07 | 3,02 | 2,98 |
|           | 11       | 4,84                     | 3,98 | 3,59 | 3,36 | 3,20 | 3,09 | 3,01 | 2,95 | 2,90 | 2,85 |
|           | 12       | 4,75                     | 3,89 | 3,49 | 3,26 | 3,11 | 3,00 | 2,91 | 2,85 | 2,80 | 2,75 |
|           | 13       | 4,67                     | 3,81 | 3,41 | 3,18 | 3,03 | 2,92 | 2,83 | 2,77 | 2,71 | 2,67 |
|           | 14       | 4,60                     | 3,74 | 3,34 | 3,11 | 2,96 | 2,85 | 2,76 | 2,70 | 2,65 | 2,60 |
|           | 15       | 4,54                     | 3,68 | 3,29 | 3,06 | 2,90 | 2,79 | 2,71 | 2,64 | 2,59 | 2,54 |
|           | 16       | 4,49                     | 3,63 | 3,24 | 3,01 | 2,85 | 2,74 | 2,66 | 2,59 | 2,54 | 2,49 |
|           | 17       | 4,45                     | 3,59 | 3,20 | 2,96 | 2,81 | 2,70 | 2,61 | 2,55 | 2,49 | 2,45 |
|           | 18       | 4,41                     | 3,55 | 3,16 | 2,93 | 2,77 | 2,66 | 2,58 | 2,51 | 2,46 | 2,41 |
|           | 19       | 4,38                     | 3,52 | 3,13 | 2,90 | 2,74 | 2,63 | 2,54 | 2,48 | 2,42 | 2,38 |
|           | 20       | 4,35                     | 3,49 | 3,10 | 2,87 | 2,71 | 2,60 | 2,51 | 2,45 | 2,39 | 2,35 |
|           | 21       | 4,32                     | 3,47 | 3,07 | 2,84 | 2,68 | 2,57 | 2,49 | 2,42 | 2,37 | 2,32 |
|           | 22       | 4,30                     | 3,44 | 3,05 | 2,82 | 2,66 | 2,55 | 2,46 | 2,40 | 2,34 | 2,30 |
|           | 23       | 4,28                     | 3,42 | 3,03 | 2,80 | 2,64 | 2,53 | 2,44 | 2,37 | 2,32 | 2,27 |
|           | 24       | 4,26                     | 3,40 | 3,01 | 2,78 | 2,62 | 2,51 | 2,42 | 2,36 | 2,30 | 2,25 |
|           | 25       | 4,24                     | 3,39 | 2,99 | 2,76 | 2,60 | 2,49 | 2,40 | 2,34 | 2,28 | 2,24 |
|           | 26       | 4,23                     | 3,37 | 2,98 | 2,74 | 2,59 | 2,47 | 2,39 | 2,32 | 2,27 | 2,22 |
|           | 27       | 4,21                     | 3,35 | 2,96 | 2,73 | 2,57 | 2,46 | 2,37 | 2,31 | 2,25 | 2,20 |
|           | 28       | 4,20                     | 3,34 | 2,95 | 2,71 | 2,56 | 2,45 | 2,36 | 2,29 | 2,24 | 2,19 |
|           | 29       | 4,18                     | 3,33 | 2,93 | 2,70 | 2,55 | 2,43 | 2,35 | 2,28 | 2,22 | 2,18 |
|           | 30       | 4,17                     | 3,32 | 2,92 | 2,69 | 2,53 | 2,42 | 2,33 | 2,27 | 2,21 | 2,16 |
|           | 40       | 4,08                     | 3,23 | 2,84 | 2,61 | 2,45 | 2,34 | 2,25 | 2,18 | 2,12 | 2,08 |
|           | 60       | 4,00                     | 3,15 | 2,76 | 2,53 | 2,37 | 2,25 | 2,17 | 2,10 | 2,04 | 1,99 |
|           | 90       | 3,95                     | 3,10 | 2,71 | 2,47 | 2,32 | 2,20 | 2,11 | 2,04 | 1,99 | 1,94 |
|           | 120      | 3,92                     | 3,07 | 2,68 | 2,45 | 2,29 | 2,17 | 2,09 | 2,02 | 1,96 | 1,91 |
|           | $\infty$ | 3,84                     | 3,00 | 2,60 | 2,37 | 2,21 | 2,10 | 2,01 | 1,94 | 1,88 | 1,83 |

# Kritische Werte der $\chi^2$ -Verteilung

|            |    | Signifikanzniveau |       |       |  |  |  |  |  |
|------------|----|-------------------|-------|-------|--|--|--|--|--|
|            |    | 10%               | 5%    | 1%    |  |  |  |  |  |
| Freiheits- | 1  | 2,71              | 3,84  | 6,63  |  |  |  |  |  |
| Grade      | 2  | 4,61              | 5,99  | 9,21  |  |  |  |  |  |
|            | 3  | 6,25              | 7,81  | 11,34 |  |  |  |  |  |
|            | 4  | 7,78              | 9,49  | 13,28 |  |  |  |  |  |
|            | 5  | 9,24              | 11,07 | 15,09 |  |  |  |  |  |
|            | 6  | 10,64             | 12,59 | 16,81 |  |  |  |  |  |
|            | 7  | 12,02             | 14,07 | 18,48 |  |  |  |  |  |
|            | 8  | 13,36             | 15,51 | 20,09 |  |  |  |  |  |
|            | 9  | 14,68             | 16,92 | 21,67 |  |  |  |  |  |
|            | 10 | 15,99             | 18,31 | 23,21 |  |  |  |  |  |
|            | 11 | 17,28             | 19,68 | 24,72 |  |  |  |  |  |
|            | 12 | 18,55             | 21,03 | 26,22 |  |  |  |  |  |
|            | 13 | 19,81             | 22,36 | 27,69 |  |  |  |  |  |
|            | 14 | 21,06             | 23,68 | 29,14 |  |  |  |  |  |
|            | 15 | 22,31             | 25,00 | 30,58 |  |  |  |  |  |
|            | 16 | 23,54             | 26,30 | 32,00 |  |  |  |  |  |
|            | 17 | 24,77             | 27,59 | 33,41 |  |  |  |  |  |
|            | 18 | 25,99             | 28,87 | 34,81 |  |  |  |  |  |
|            | 19 | 27,20             | 30,14 | 36,19 |  |  |  |  |  |
|            | 20 | 28,41             | 31,41 | 37,57 |  |  |  |  |  |
|            | 21 | 29,62             | 32,67 | 38,93 |  |  |  |  |  |
|            | 22 | 30,81             | 33,92 | 40,29 |  |  |  |  |  |
|            | 23 | 32,01             | 35,17 | 41,64 |  |  |  |  |  |
|            | 24 | 33,20             | 36,42 | 42,98 |  |  |  |  |  |
|            | 25 | 34,38             | 37,65 | 44,31 |  |  |  |  |  |
|            | 26 | 35,56             | 38,89 | 45,64 |  |  |  |  |  |
|            | 27 | 36,74             | 40,11 | 46,96 |  |  |  |  |  |
|            | 28 | 37,92             | 41,34 | 48,28 |  |  |  |  |  |
|            | 29 | 39,09             | 42,56 | 49,59 |  |  |  |  |  |
|            | 30 | 40,26             | 43,77 | 50,89 |  |  |  |  |  |