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Power System Operation and Stability 

 

State Estimation with Matlab  

 
 
 

Introduction 
 
In this practical course, state estimation is first dealt with in linear form. A simple test grid with meas-
ured variables is provided. The linear state estimation must then be completely programmed and ex-
amined for changes in the input variables. The second part of the practical course deals with a 3-node 
grid in which measured values are also specified. Here, the state estimation for energy grids is to be 
programmed in parts.  
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Preparation 
 
• Familiarize yourself with the equations for linear state estimation and state estimation for energy 

grids. (Lecture 5 and exercise 3) 
• Basic knowledge of programming in Matlab is assumed.  ("Getting Started" book about Matlab or 

the tutorial) 
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1 Basics 

1.1 General description 

State estimation can be used to 
• calculate the current system state 
• compensate for the influence of measurement errors 
• calculate missing grid variables 
• eliminate bad measurement data 
• monitor the grid structure 

i.e. create a complete and reliable data set of the system state. 
 

 
Figure 1.1: Input and output of the state estimation 

 
The input parameters of the model can be divided into two categories: 
The first category contains measured values that are recorded across the grid. As measured 
values are always subject to errors (tolerance ranges of the measuring devices, calibration 
errors, transmission errors, etc.), they can be weighted using variances. The following applies: 
the smaller the variance, the greater the weighting. If a measured value can be assumed to be 
very accurate, a small value is selected for the variance. The second category of input param-
eters includes the measurement model itself: 𝑧𝑧 =  ℎ(𝑥𝑥)+𝑣𝑣. The faulty grid measurements 𝑧𝑧 
are equated with the measurement model matrix ℎ(𝑥𝑥) and the measurement error vector 𝑣𝑣. 
For error-free measurements, the measurement error vector would correspond to a zero vec-
tor. 
 

 
Figure 1.2: Measurement model for calculating the state vector 

Measurements 𝑧𝑧
* Node Power 𝑃𝑃𝑖𝑖 ,𝑄𝑄𝑖𝑖
* Power Flows 𝑃𝑃𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑖𝑖𝑖𝑖
* Voltage Magnitude 𝑈𝑈𝑖𝑖

Variance 𝜎𝜎𝑖𝑖2

Measurement model: 
𝑧𝑧 = ℎ(𝑥𝑥)+𝑣𝑣

State
Estimation

Grid state 𝑥𝑥
= 𝑈𝑈𝑖𝑖 complxe node 
voltages in every 

node

𝑥𝑥
𝑣𝑣

𝑧𝑧ℎ

𝑥𝑥: State vector
(complexe node voltages)

ℎ: Measurement model matrix 
(Grid topology, grid parameters)

𝑣𝑣: Measurement fault vector
𝑧𝑧: Measurement vector
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1.2 Derivation of the target function 

 

The following function is derived  𝑑𝑑𝑑𝑑�𝑥𝑥�
𝑑𝑑𝑥𝑥

= 0 

 
Inaccurate measurements and their effects 
Assumption: Measurements 𝑧𝑧 are inaccurate! 

Effect: With inaccurate measurements, the grid equations 𝑃𝑃𝑖𝑖 ,𝑄𝑄𝑖𝑖,𝑃𝑃𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑖𝑖𝑖𝑖,𝑈𝑈𝑖𝑖 
do not work out. This means that the grid state cannot be clearly de-
termined. (Grid state: 𝑈𝑈𝑖𝑖∀ 𝑖𝑖) 

Solution: An auxiliary element is used, which ensures that the measured values 
can be assumed to be non-optimal. The auxiliary element is the meas-
urement error vector 𝑣𝑣, which is inserted in the measurement model 
𝑧𝑧 =  ℎ(𝑥𝑥)+𝑣𝑣 so that the grid equations have a unique solution. 

Minimization of the assumed measurement error 
Assumption for 𝑣𝑣: As it can be assumed that the measured values correspond approxi-

mately to the actual values, the measurement error vector 𝑣𝑣 should 
be minimized. In addition, the measured values can be weighted if it is 
known which measuring devices are particularly accurate or inaccu-
rate. 

Solution: Minimization is performed using the square of the measurement er-
ror vector 𝑣𝑣 so that positive and negative values do not cancel each 
other out. The weighting by different accuracies is carried out by mul-
tiplication with the inverted covariance matrix 𝑅𝑅−1. This results in the 
objective function 𝐽𝐽�𝑥𝑥� =  𝑣𝑣𝑇𝑇𝑅𝑅−1𝑣𝑣 = 𝑚𝑚𝑚𝑚𝑚𝑚. Minimization is performed 

by deriving the objective function from the state vector 𝑥𝑥:  𝑑𝑑𝑑𝑑�𝑥𝑥�
𝑑𝑑𝑥𝑥

= 0 

Non-linear grid equations as a problem 
Problem: As the grid equations are non-linear equations, simple differentiation 

is not possible.  

Solution: For this case, the state estimation was developed using the Taylor se-
ries expansion. 

State Estimation 
Calculation: Using the iterations of the state estimation a voltage vector 𝑥𝑥� is calcu-

lated that satisfies the grid equations and minimizes the measure-
ment fault vector 𝑣𝑣. If the state vector 𝑥𝑥� is now inserted into the grid 
equations, an improved measurement vector 𝑧̂𝑧  =  ℎ�𝑥𝑥�� is obtained. 
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1.3 State Estimation Algorithm and Preparation 

The algorithm is first presented below. The individual elements used by the algorithm are 
then discussed. 
 

 
 
Before the algorithm can be started, variables/vectors/matrices must be defined. The table 
shows all variables that are defined in the following. 
 

Given 
Measurement vector (inaccurate) 𝑧𝑧 
Inverted covariance matrix with standard deviations 𝜎𝜎 𝑅𝑅−1 
Convergence threshold 𝜀𝜀 
Angle resp. imaginary part of the voltage at node 1 𝑓𝑓1 = 0 
Start values of the state vector 𝑥𝑥(0) 
Vector with grid equations ℎ�𝑥𝑥(𝑘𝑘)� 
Jacobi matrix (Differentiated grid equations) 𝐻𝐻�𝑥𝑥(𝑘𝑘)� 

Searched 
State vector 𝑥𝑥� 

 
  

Determine start values 𝑥𝑥(0) & load measurement vector 𝑧𝑧 

Set up Jacobian matrix 𝐻𝐻�𝑥𝑥(𝑘𝑘)� 

𝑘𝑘 = 𝑘𝑘 + 1 
Improved state vector:  

𝑥𝑥(𝑘𝑘+1) = 𝑥𝑥(𝑘𝑘) + 𝐺𝐺−1 ∙  𝐻𝐻𝑇𝑇�𝑥𝑥(𝑘𝑘)� ∙  𝑅𝑅−1 ∙ �𝑧𝑧 − ℎ�𝑥𝑥(𝑘𝑘)��  

Improved state vector 𝑥𝑥� = 𝑥𝑥(𝑘𝑘+1)   
Improved measurement vector 𝑧̂𝑧 = ℎ�𝑥𝑥��  

Convergence test: �𝑥𝑥(𝑘𝑘+1) − 𝑥𝑥(𝑘𝑘)� ≤ 𝜀𝜀 

Calculate 𝐺𝐺 = 𝐻𝐻𝑇𝑇�𝑥𝑥(𝑘𝑘)� ∙  𝑅𝑅−1 ∙ 𝐻𝐻�𝑥𝑥(𝑘𝑘)� 

no 

ja 

Figure 1.3: State Estimation Algorithm 
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Start values & convergence threshold 

𝑓𝑓1 = 0 𝑥𝑥(0) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑓𝑓1
𝑓𝑓2
⋮
𝑒𝑒1
𝑒𝑒2
⋮ ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
0
0
⋮
1
1
⋮ ⎦
⎥
⎥
⎥
⎥
⎤

with 𝑈𝑈1 = 𝑒𝑒1 + 𝑗𝑗 𝑓𝑓1 𝜀𝜀 = 10−4 

   

Measurement model: 𝑧𝑧 =  ℎ�𝑥𝑥� + 𝑣𝑣 

𝑧𝑧 =

⎣
⎢
⎢
⎢
⎡
𝑃𝑃𝑖𝑖
𝑄𝑄𝑖𝑖
𝑃𝑃𝑖𝑖𝑗𝑗
𝑄𝑄𝑖𝑖𝑖𝑖
𝑈𝑈𝑖𝑖 ⎦
⎥
⎥
⎥
⎤

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ℎ�𝑥𝑥� =

⎣
⎢
⎢
⎢
⎡
𝑃𝑃𝑖𝑖
𝑄𝑄𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖
𝑄𝑄𝑖𝑖𝑖𝑖
𝑈𝑈𝑖𝑖 ⎦
⎥
⎥
⎥
⎤

 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣 =
𝑣𝑣1
𝑣𝑣2
⋮

 

   

Part of the objective function: 𝐺𝐺 = 𝐻𝐻𝑇𝑇�𝑥𝑥� ∙  𝑅𝑅−1 ∙ 𝐻𝐻�𝑥𝑥� 

𝐻𝐻𝑇𝑇�𝑥𝑥� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑓𝑓𝑖𝑖

    
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑒𝑒𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑓𝑓𝑖𝑖

    
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑒𝑒𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑓𝑓𝑖𝑖

    
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑒𝑒𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑓𝑓𝑖𝑖

    
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑒𝑒𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑓𝑓𝑖𝑖

    
𝑑𝑑𝑈𝑈𝑖𝑖
𝑑𝑑𝑒𝑒𝑖𝑖 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑑𝑃𝑃1
𝑑𝑑𝑓𝑓2
𝑑𝑑𝑃𝑃2
𝑑𝑑𝑓𝑓2
⋮

𝑑𝑑𝑃𝑃1
𝑑𝑑𝑓𝑓3

𝑑𝑑𝑃𝑃1
…

𝑑𝑑𝑃𝑃2
𝑑𝑑𝑓𝑓3

𝑑𝑑𝑃𝑃2
…

⋮     ⋮

𝑑𝑑𝑃𝑃1
𝑑𝑑𝑒𝑒1

𝑑𝑑𝑃𝑃1
𝑑𝑑𝑒𝑒2

𝑑𝑑𝑃𝑃1
…

𝑑𝑑𝑃𝑃2
𝑑𝑑𝑒𝑒1

𝑑𝑑𝑃𝑃2
𝑑𝑑𝑒𝑒2

𝑑𝑑𝑃𝑃2
…

⋮      ⋮     ⋮
𝑑𝑑𝑄𝑄𝑖𝑖
𝑑𝑑𝑓𝑓2

… … 𝑑𝑑𝑄𝑄𝑖𝑖
𝑑𝑑𝑒𝑒1

… …

𝑑𝑑𝑃𝑃𝑖𝑖𝑖𝑖
𝑑𝑑𝑓𝑓2

… …

𝑑𝑑𝑄𝑄𝑖𝑖𝑖𝑖
𝑑𝑑𝑓𝑓2

… …

𝑑𝑑𝑈𝑈𝑖𝑖
𝑑𝑑𝑓𝑓2

… …

𝑑𝑑𝑃𝑃𝑖𝑖𝑖𝑖
𝑑𝑑𝑒𝑒1

… …

𝑑𝑑𝑄𝑄𝑖𝑖𝑖𝑖
𝑑𝑑𝑒𝑒1

… …

𝑑𝑑𝑈𝑈𝑖𝑖
𝑑𝑑𝑒𝑒1

… …
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 𝑅𝑅−1 =

⎣
⎢
⎢
⎢
⎡

1
𝜎𝜎12

1 …

1
1
𝜎𝜎22

…

⋮ ⋮ ⋱⎦
⎥
⎥
⎥
⎤
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Grid equations: 

𝑃𝑃𝑖𝑖 =  �𝑃𝑃𝑖𝑖𝑖𝑖 = (𝑒𝑒𝑖𝑖2 + 𝑓𝑓𝑖𝑖
2)�𝐺𝐺𝑖𝑖𝑖𝑖𝑗𝑗 + ���𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗�𝐺𝐺𝑖𝑖𝑖𝑖 − �𝑒𝑒𝑖𝑖𝑓𝑓𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑓𝑓𝑖𝑖�𝐵𝐵𝑖𝑖𝑖𝑖�

𝑗𝑗≠𝑖𝑖𝑗𝑗≠𝑖𝑖𝑗𝑗≠𝑖𝑖

 

𝑄𝑄𝑖𝑖 =  �𝑄𝑄𝑖𝑖𝑖𝑖 = −(𝑒𝑒𝑖𝑖2 + 𝑓𝑓𝑖𝑖
2)�𝐵𝐵𝑖𝑖𝑖𝑖𝑗𝑗 + ��−�𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗�𝐵𝐵𝑖𝑖𝑖𝑖 − �𝑒𝑒𝑖𝑖𝑓𝑓𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑓𝑓𝑖𝑖�𝐺𝐺𝑖𝑖𝑖𝑖�

𝑗𝑗≠𝑖𝑖𝑗𝑗≠𝑖𝑖𝑗𝑗≠𝑖𝑖

 

𝑃𝑃𝑖𝑖𝑖𝑖 = �𝑒𝑒𝑖𝑖2 + 𝑓𝑓𝑖𝑖
2�𝐺𝐺𝑖𝑖𝑖𝑖𝑗𝑗 + �𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗�𝐺𝐺𝑖𝑖𝑖𝑖 − �𝑒𝑒𝑖𝑖𝑓𝑓𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑓𝑓𝑖𝑖�𝐵𝐵𝑖𝑖𝑖𝑖 

𝑄𝑄𝑖𝑖𝑖𝑖 = −�𝑒𝑒𝑖𝑖2 + 𝑓𝑓𝑖𝑖
2�𝐵𝐵𝑖𝑖𝑖𝑖𝑗𝑗 − �𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗�𝐵𝐵𝑖𝑖𝑖𝑖 − �𝑒𝑒𝑖𝑖𝑓𝑓𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑓𝑓𝑖𝑖�𝐺𝐺𝑖𝑖𝑖𝑖 

𝑈𝑈𝑖𝑖 = ��𝑒𝑒𝑖𝑖2 + 𝑓𝑓𝑖𝑖
2� mit 𝑈𝑈𝑖𝑖 = 𝑒𝑒𝑖𝑖 + 𝑗𝑗𝑓𝑓𝑖𝑖 

Attention: The two-port representation is decisive for the use of the line parameters in the 
equations (NOT AS IN THE LOAD FLOW CALCULATION!!): 
 

 

 

 

𝑌𝑌𝑖𝑖𝑖𝑖𝑗𝑗 = 𝐺𝐺𝑖𝑖𝑖𝑖𝑗𝑗 + 𝑗𝑗𝐵𝐵𝑖𝑖𝑖𝑖𝑗𝑗 

         =
1

𝑍𝑍𝐿𝐿_𝑖𝑖𝑖𝑖
+ 𝑗𝑗

𝜔𝜔𝐶𝐶𝑖𝑖0_𝑗𝑗

2
 

 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑖𝑖𝑖𝑖 + 𝑗𝑗𝐵𝐵𝑖𝑖𝑖𝑖 

       = −
1

𝑍𝑍𝐿𝐿_𝑖𝑖𝑖𝑖
 

 
 
Example: Line parameters in Matlab (cross elements neglected): 
Zij = ZL = R + (1i*length*line constant*2*pi()*50); 
Yii_j = 1/Zij; 
Yij = -1/Zij; 
Gii_j = real(Yii_j);     
Gij = real(Yij); 
Bii_j = imag(Yii_j);     
Bij = imag(Yij); 
 
Example: Grid equations in Matlab: 
Pij = (ei^2+fi^2)*Gii_j + (ei*ej+fi*fj)*Gij - (ei*fj-ej*fi)*Bij; 
Qij = -(ei^2+fi^2)*Bii_j - (ei*ej+fi*fj)*Bij - (ei*fj-ej*fi)*Gij; 
Ui = sqrt(ei^2+fi^2); 
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2 Programming the linear state estimation 

Given is the grid below: 
 
 
 
 
 
 
 
 
 
The total current 𝐼𝐼 and the voltage 𝑈𝑈2 are given as measured variables. The variances 𝜎𝜎𝑖𝑖2 are 
assumed to be 1 𝐴𝐴2 and 1 𝑉𝑉2. 
 
Task: 

1) Think first before you start programming: 
a. Set up the equations for 𝐼𝐼 and 𝑈𝑈2? Remember that the quantity 𝑈𝑈 you are 

looking for must be contained in both equations! 
b. Set up the measurement model 𝑧𝑧 =  𝐻𝐻 𝑥𝑥 + 𝑣𝑣 by defining the measurement 

vector 𝑧𝑧, the vector with the measurement model 𝐻𝐻 and the fault vector 𝑣𝑣. 
2) Open Matlab and create a new script (Home  "New Script") 
3) Program the linear state estimation  

a. Define the vectors 𝑧𝑧 and 𝐻𝐻 and the inverted covariance matrix 𝑅𝑅−1. Also de-
fine the required variable 𝑥𝑥 with the syms function. 

b. The objective function 𝐽𝐽�𝑥𝑥� must then be set up and derived. 
c. The system can be solved using the eqn function and the solve function. 
d. The improved measured value 𝑧̂𝑧  =  𝐻𝐻 𝑥𝑥�  and the weighted error sum of 

squares 𝐽𝐽�𝑥𝑥� =  𝑣𝑣𝑇𝑇𝑅𝑅−1𝑣𝑣 can then be calculated. 

 Covariance matrix with standard devi-
ation 𝜎𝜎𝑖𝑖 
 

𝑅𝑅−1 =

⎣
⎢
⎢
⎡

1
𝜎𝜎12

0

0
1
𝜎𝜎22⎦

⎥
⎥
⎤
 

Helpful Matlab functions  

Generate the 
searched quantity 

syms x 

Derivation of the ob-
jective function 

diff(J) 

 Objective function (𝐻𝐻 in this case is 
the measurement model vector) 
 
𝐽𝐽�𝑥𝑥� =  𝑣𝑣𝑇𝑇𝑅𝑅−1𝑣𝑣 
          = (𝑧𝑧 − 𝐻𝐻 𝑥𝑥)𝑇𝑇𝑅𝑅−1(𝑧𝑧 − 𝐻𝐻 𝑥𝑥) 

Objective function    
= 0 

eqn = (dJ == 0) 

Calculation of the 
searched quantity 

x_searched = 
solve(eqn,x) 

 
4) Now run the script. Which value is calculated for 𝑈𝑈? 
5) What happens when the actual values are used? (𝐼𝐼 = 92 − 46𝑖𝑖 and 𝑈𝑈2 = 138 + 46𝑖𝑖) 

Does the algorithm calculate 𝑈𝑈 = 230 + 0𝑖𝑖? 
6) What happens if the accuracy is changed (change standard deviation)? 
7) What happens if the measured values are changed (e.g. increase the real part of I)?  

AC 

𝑅𝑅1 = 1 Ω 

𝑅𝑅1 = 2 Ω 𝑋𝑋1 = 2 Ω 

𝐼𝐼 = 93 − 47𝑖𝑖 𝐴𝐴 

𝑈𝑈 

𝑈𝑈2 = 137 + 45𝑖𝑖 𝑉𝑉 
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3 Programming the state estimation for a 3 node grid  

The following grid is given with the specified line parameters. Cross elements of the lines are 
neglected in this example. 
 

 
 
 
 
Task: 
The document "PSOS_SE_3nodalgrid_student.m" contains parts of the state estimation that 
need to be completed. The document is divided into sections for this purpose: 
 
Preparation sections 

0. Searched variables 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑓𝑓2, 𝑓𝑓3 for 𝑥𝑥 
1. Measurements 𝑃𝑃𝑖𝑖,𝑄𝑄𝑖𝑖,𝑃𝑃𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑖𝑖𝑖𝑖,𝑈𝑈𝑖𝑖 for 𝑧𝑧 
2. Line parameters  
3. Grid equations 𝑃𝑃𝑖𝑖 ,𝑄𝑄𝑖𝑖,𝑃𝑃𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑖𝑖𝑖𝑖,𝑈𝑈𝑖𝑖 
4. Derivation of the grid equations 𝑃𝑃𝑖𝑖 ,𝑄𝑄𝑖𝑖,𝑃𝑃𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑖𝑖𝑖𝑖,𝑈𝑈𝑖𝑖 by 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3,𝑓𝑓2,𝑓𝑓3 

 
State Estimation 

5. Measurement vector 𝑧𝑧, measurement model matrix ℎ(𝑥𝑥), Jacobian matrix 𝐻𝐻(𝑥𝑥) and 
standard deviation 𝑅𝑅−1 

6. Iteration algorithm  
 
Evaluation 

7. Command window and plots 
 
 
 
 
 
Parts must now be added to the sections. Please follow the instructions below, which will 
guide you step by step through the code.  

1

Last

U1
I1

T3

2

3 U3

I3

U2

I2

G1 G2

110kV
/30kV

Line parameters 
Length of line 1-2 = 54.881km 
Length of line 1-3 = 62.198km 
r' = 0.08 Ohm/km 
l' = 1.206e-3 H/km 
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Instruction: 
Open the Matlab file "PSOS_SE_3nodalgrid_student.m" and familiarize yourself with the 
structure of the script (sections). 
 

0. In section 0 the required variables must be defined. These are used later when creat-
ing the power flow equations. 
To use variables in Matlab, the "syms" function can be used. By entering "syms x1 
x2", 2 variables x1 and x2 can be created so that a function y(x1,x2) can be defined 
and solved. Now apply the syms function to the required variables 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑓𝑓2, 𝑓𝑓3 
and set 𝑓𝑓1 =0. 
Hint: Matlab function: syms variable1 variable2  

 
1. The measured values are given in section 1. There is nothing to do here. 

 
2. In section 2, the admittances Z12 and Z13 as well as some conductances G and sus-

ceptances B are already given. However, the missing conductance values G and sus-
ceptances B still need to be programmed.  
Follow the two-port representation and the equations given in the basic chapter. 
Hint: Note: Pay attention to the minus characters in the two-port representation! 
 

3. The grid equations are to be programmed in section 3.  
The grid equations contain the conductances and susceptances of the two-port rep-
resentation and the variables that have already been generated with "syms". Use the 
equations given in the basic chapter. 
Hint: Example: fP12 = (e1^2+f1^2)*G11_2 + (e1*e2+f1*f2)*G12 - (e1*f2-e2*f1)*B12; 

 
4. In section 4, all grid equations are derived according to each variable (syms). 

The individual grid equations from the previous section are now derived individually 
according to 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑓𝑓2, 𝑓𝑓3. For each grid equation, the new equations can be 
saved in a row vector, which makes it easier to create 𝐻𝐻(𝑥𝑥). 
Hint: Structure of row vector: rowP12 = [dP12f2,dP12f3,dP12e1,dP12e2,dP12e3]; 
 

5. The vectors z and h(x) and the matrices H(x) and R_inv need to be defined in section 
5. 

a. The measurement vector z consists of the measurements from section 1. 
b. The vector h(x) should now contain all the grid equations. Make sure that the 

order is the same as that of the measurement vector z. 
Hint: Matlab function: h(searchedSize1, ...) = [function 1; function 2; ...] 

c. When creating the Jacobian matrix H(x), the row vectors from section 4 can 
be accessed. Make sure that the order is the same as that of the measure-
ment vector. 
Hint: Matlab function: H(searchedSize1, ...) = [function 1; function 2; ...] 

d. The inverted covariance matrix R_inv is a diagonal matrix and should initially 
be filled with all entries = 1. Later, the measured values are weighted differ-
ently. 
Hint: Matlab function: eye(length(z)) 
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6. Section 6 contains the iterating algorithm. The start values 𝑥𝑥(𝑘𝑘) and some other nec-
essary variables are already defined in the code.  

a. As can be seen in Figure 3.1, 𝐻𝐻�𝑥𝑥(𝑘𝑘)� must be calculated first. 
Hint: Matlab function: H_calculated = H(x_k1,...,x_k5) 
Hint: Matlab function: X_rounded = vpa(X, decimal places) 

b. Now calculate 𝐺𝐺, round G and calculate the inverse of 𝐺𝐺.  
Hint: Matlab function: Transpose a matrix M: M.' 
Hint: Matlab function: G_inverse = inv(G) 

c. First calculate  ℎ�𝑥𝑥(𝑘𝑘)�, round the vector and then calculate the improved 
state vector 𝑥𝑥(𝑘𝑘+1) 
Hint: Matlab function: h_calculated = h(x_k1,...,x_k5) 

 

 
7. The state estimation is now fully programmed. This should be tested. Use the "Run" 

button to start the simulation. What can be seen in the plots? 
 

8. The voltage value U2 should now not provide optimum measured values. U2 is 95% 
of the original value.  

 
9. In order to include the inaccuracy of the measuring device for U2 in the calculation, 

the weighting for U2 must be adjusted in the inverted covariance matrix. Set the 
value to 0.5 instead of 1. 

 
10. What happens if the value from exercise 9 is set to 0.000001 instead of 0.5? 

 
 
 
  

Figure 3.1: : State Estimation Algorithm 

Determine start values 𝑥𝑥(0) & read in measurement vector 𝑧𝑧 

Set up Jacobian matrix 𝐻𝐻�𝑥𝑥(𝑘𝑘)� 

𝑘𝑘 = 𝑘𝑘 + 1 
Improved state vector:  

𝑥𝑥(𝑘𝑘+1) = 𝑥𝑥(𝑘𝑘) + 𝐺𝐺−1 ∙  𝐻𝐻𝑇𝑇�𝑥𝑥(𝑘𝑘)� ∙  𝑅𝑅−1 ∙ �𝑧𝑧 − ℎ�𝑥𝑥(𝑘𝑘)��  

Improved state vector 𝑥𝑥� = 𝑥𝑥(𝑘𝑘+1)   
Improved measurement vector 𝑧̂𝑧 = ℎ�𝑥𝑥��  

Convergence test: �𝑥𝑥(𝑘𝑘+1) − 𝑥𝑥(𝑘𝑘)� ≤ 𝜀𝜀 

Calculate 𝐺𝐺 = 𝐻𝐻𝑇𝑇�𝑥𝑥(𝑘𝑘)� ∙  𝑅𝑅−1 ∙ 𝐻𝐻�𝑥𝑥(𝑘𝑘)� 

no 

ja 
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4 Overview of important Matlab constructs 

 
help [something]   %Help for command/function 'something'.  
A=3;  %Matrix A consists of a single element with value 3 (All variables are repre-

sented as matrices in Matlab). 
A1=3+i*6;  %A1 is complex: Re{A1}=3, Im{A1}=6 
A2=3*exp (j*45)  %A2 is complex: magnitude=3, angle=45° 
B=[1,2,3];  %B is a vector with 3 elements   
C=[1,2,3;4,5,6];  %C is a matrix with 2 rows and 3 columns 
D=[];  %D is an empty matrix 
x=inf;  %x is equal to infinity 
x=nan;  %Value of x is undefined e.g. result of a division by 0 
x=B(i);  %x has the value of the i-th element of the vector B 
x=C(i,j);  %x has the value of the element in the i-th row and the j-th column of the ma-

trix C 
x=C(i,:);  %x is a vector and contains all values of the i-th row of C 
x=C(i,k:l);  %x is a vector and contains all values of the i-th row that belong to the col-

umns k to l  
E=zeros(M,N);  % (M x N) zero matrix (M x M if no N specified), i.e. E(i,j)=0 
E=ones(M,N);  % (M x N) matrix (M x M if no N specified) with E(i,j)=1 
E=[1:1:10];  % corresponding to E=[1,2,3,4,5,6,7,8,9,10] (general E=[a:n:b] and a, b, n real 
numbers) 
[n,m]=size(C);  %Dimensions of the matrix C 
l=length(B);  %length of the vector/matrix B 
3*B;  %all values of B are multiplied by 3 
B'  %Transpose a matrix/vector 
C=B1 .* B2;  %C(i,j) = B1(i,j)*B2(i,j) (Necessary condition: Dim(B1) = Dim(B2)) 
x^3;  % 3x  
C=B.^3;  %C(i,j) = B(i,j)³ 
B^-1;  %Inverse matrix of B 
conj(U);  %Conjugate complex matrix to U 
abs(z);  %amount of the complex number z 
angle(z);  %angle of the complex number z 
real(z);  %real part of the complex number z 
imag(z);  %Imaginary part of the complex number z 
mod(x,y);  %modulo(x,y) (in C++ syntax: x%y) 

x=sum(B);  % ∑=
i

ibx  

x=find(B>1);  %x is a vector which contains all indices of those elements of B which satisfy 
the condition bi>1 (for matrices also notation (z,s)=find(C>1) is possible). 

[R1,R2,...] =BelFun(matrix,vector,variable,const...);  
%Function call of a function BelFun(...); the elements R1, R2 etc. are assigned 
the return of the function. 

function[R1,R2...]=BelFun(Matrix,Vector,Variable,const)  
%Function declaration 

if (x~=1)...  % if-else statement (condition true if x is not equal to 1) 
elseif(x>=1|x==4&h<4)   %(condition true if (x >=1) or (x=4 and h<4)) 
 ... else ... end;  %termination/termination of the statement 
for (i = 1:n)...end;  %count loop: i is incremented by 1 in each iteration, i runs here from 1:n 
while(...)...end;  %While loop 
diag(ones(n,1));  %creates a unit matrix with dimension n x n 
sort(C);  %sorts elements of C 
isempty(C);  %true if C contains no elements 
sin(A),cos(a) ...  %sin, cos... of a number or each element of the matrix 
round(x,y)  %round x to y digits to the right of the decimal point 
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