
PSOS (1) Power flow calculation with Matlab Page 1

Power System Operation and Stability

Power flow programming with Matlab

In this practical course the contents of power flow programming are deepened and partly extended.
Here, the Newton-Raphson method is to be programmed in polar coordinates. In this practical course,
the knowledge from the chapter of the fast decoupled power flow is also partly required. The pro-
gramming is done in Matlab and if possible the advantages of Matlab regarding matrix oriented pro-
gramming should be used. Only the main part of the calculation is to be implemented. The output as
well as the grid data, the structure of the nodal admittance matrix and the function-names are already
given. At the end of the programming work, the power flow is tested and extended in detail.

• Programming of the power flow via the operating equipment
• Programming the Newton-Raphson power flow in polar coordinates (without PU nodes).

Table of contents

1 Description of the graphical interface and preparation for the tasks 2
2 Task 1: Programming the power flow across the equipment ... 5
3 Task 2: Programming the Newton-Raphson method in polar coordinates 6
4 Appendix ... 8
4.1 Grid diagram of the internship grid .. 8
4.2 Overview of important Matlab constructs ... 9

Preparation

1. You should familiarize yourself with chapter 3 "Power Flow Calculation" of the lecture PSOS
part 1.

2. Basic knowledge of the programming language Matlab is assumed. The familiarization with
Matlab can be done by using the "Getting Started" book of Matlab or by using the tutorial.

Thoroughly work through the following chapters of the experiment instructions and familiarize your-
self with the following:

• Graphical user interface (GUI of the interface) and its buttons (buttons)
• Directory structure of the project
• Structure of the matrices in the file Praktikum_Netz.m

PSOS (1) Power flow calculation with Matlab Page 2

1 Description of the graphical interface and preparation for the tasks

Download the Matlab files from moodle and unzip the folder. Then open Matlab and navigate to the
folder where the interface.m file is located. For easier and clearer processing of the experiment, the
graphical user interface (GUI) shown in Figure 1.1 was added. To invoke the GUI, execute the command
„interface“ in the Matlab Command Window.

The interface contains the grid image of the test grid. Each element of the test grid is assigned to
display elements in which the respective state variables of the grid components, i.e. complex voltages
and powers in each node as well as power flows on each transmission element, are presented. Here,
in each case, the reference values are displayed in red (the values calculated by the supervisor version
of the power flow) in the top line of the display field and the results of the power flow programmed
by you are displayed in blue in the line below.

Figure 1.1: User interface of the power flow test

PSOS (1) Power flow calculation with Matlab Page 3

The elements for controlling the calculation are explained below. The elements that become particu-
larly important for this practical course are marked in color.

Start button Start the selected calculation

Convergence parameters

Convergence Specification of the convergence value at which the power flow calculation
procedure is to be aborted.

Max. Number of
iterations

Maximum number of iterations after which the iterative calculation should be
terminated in case of non-convergence.

Option fields "Calculation“

Sij only Calculation and display of power flows (chapter 2)

PQ-PFC only Calculation of the power flow (LFR) with the reference node and the PQ
nodes (all nodes are understood as PQ nodes).

PQ-PU-PFC Calculation of the power flow with additional consideration of the PU nodes

Full PFC Calculation of the power flow with conversion of PU to PQ nodes.

Test grid" radio buttons

Praktikum_Netz Calculations are performed for the five-node test grid. The results are dis-
played in the main window as well as in the Matlab Command Window.

IEEE grid Calculations are performed for the IEEE RTS three-zone grid. The results are
displayed only in the Matlab Command Window. The display elements of the
main window are hidden.

Advanced display

RMSE Display of the deviations of the power flow results from the reference values
in the Command Window and in a bar graph

In the editor Display of power flow results as text file in the editor

Reset Reset the display elements

Print Output of the current window view (Praktikum_Netz) on a printer

Convergence Information about the convergence behavior of the implemented Newton-
Raphson algorithm

Time Required time duration for the calculation of the power flow

Iterations Number of iterations until convergence is reached

PSOS (1) Power flow calculation with Matlab Page 4

After pressing the Start button, the calculations are executed according to the flowchart shown in Fig-
ure 1.2. Figure 1.3 shows the directory structure of the folders including the files that have to be pro-
cessed in this lab.

Figure 1.2: Flow chart of the power flow calculation

Figure 1.3: Directory structure of the Matlab project

Task 1
Task 2

Start

End

system parameters

grid data

Calculation of the nodal admit-
tance matrix and auxiliary variables

power flow calculation
nbtp_lfnr

power flow calculation
nbtp_Sij

Output and storage of the re-
sults

nbtp_systemparam.m

Praktikum_Netz.m

Results file

PSOS (1) Power flow calculation with Matlab Page 5

2 Task 1: Programming the power flow via the operating equipment

As a "warm-up" regarding the programming language Matlab and in preparation for the actual power
flow, the power flows over all lines and transformers are to be calculated with an existing result of a
power flow. Together with the results of the voltages of all nodes, which are derived from the power
flow to be implemented later and are given here, these quantities are important for the evaluation of
the overall state of the grid. Figure 2.1 describes the equivalent image of a line.

Figure 2.1 Equivalent circuit diagram of a device

The power flows Sij and Sji are calculated with the following formulas. Note that the complex-conju-
gate quantities are given here!

1. Open the file nbtp_Sij.m and familiarize yourself with the function and the elements.

Connection_Data and Tct_Data can be found in the grid file Praktikum_Netz.m, where
Connection_Data represents the line connections and Tct_Data the transformer connec-
tions. The vector Ua contains the 5 complex node voltages.

2. Program the power flows using the above formulas and the input data for the line con-
nections (Sij, Sji) on the one hand and the transformer connections (Sij_t, Sji_t) on the
other hand.

Tip 1: i and j are selected so that they correspond to the node number from Connec-
tion_Data and Tct_Data. Example: Sij = [S12; S13; S23; S24; S34] and Sij_t = [S25; S45].
Tip 2: First create the vectors Ui, Ui*, Uj, Yij, Yi0 and then use element-wise multiplica-
tion. Example: Vector1 .* Vector2
Tip 3: In case of errors: Use the debugging function of Matlab. Click on the line number
to the left of your code or, depending on the Matlab version, on the line next to the
numbers. This creates a breakpoint at which the script execution pauses. Now start the
calculation with the start button of the GUI and use the "Step" button in the selection
bar above your code to execute your script step by step. In the "Workspace" you can
display the elements by double clicking on them.

3. Now select "Sij only" in the GUI and press the start button. To check the correctness of

the results, you can compare the correct values displayed in red with the blue values
calculated by you OR to get a quick overview, you can display the results by calling the
RMSE view of the GUI.

ijS⇒

jUiU

ijI jiIijY

0iY 0jY0iI 0jI

jiS⇐

0
2***

)(iiijjiiijijijiij YUYUUUjQPIUS +−=−==

0
2***

)(jjijijjjijijijji YUYUUUjQPIUS +−=−==

PSOS (1) Power flow calculation with Matlab Page 6

3 Task 2: Programming the Newton-Raphson method in polar coordinates

The Newton-Raphson algorithm is to be programmed as indicated in figure 3.1. For this purpose parts
of the algorithm are already given in the file nbtp_lfnr.m, which have to be completed by you.

 1. Set 𝑈𝑈𝑖𝑖
(0)and

𝛿𝛿𝑖𝑖
(0)

𝑈𝑈𝑖𝑖
(0) = 1 𝑢𝑢𝑢𝑢𝑢𝑢 𝑈𝑈𝑖𝑖

(0) = 𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝛿𝛿𝑖𝑖

(0) = 0

 2. With 𝑈𝑈𝑖𝑖

(𝜇𝜇) cal-
culate the
nodal powers

𝑃𝑃𝑖𝑖
(𝜇𝜇) = �𝑈𝑈𝑖𝑖𝑈𝑈𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑦𝑦𝑖𝑖𝑖𝑖cos(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑖𝑖)

𝑄𝑄𝑖𝑖
(𝜇𝜇) = �𝑈𝑈𝑖𝑖𝑈𝑈𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑦𝑦𝑖𝑖𝑖𝑖sin(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑖𝑖)

𝜇𝜇 ≔ 𝜇𝜇 + 1
 3. Calculate devi-

ations
∆𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑖𝑖

(𝜇𝜇)
∆𝑄𝑄𝑖𝑖 = 𝑄𝑄𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑖𝑖

(𝜇𝜇)

 Convergence? Yes END
 no
 4. Solve linear

System �
∆𝑃𝑃
∆𝑄𝑄� = 𝐽𝐽 �

∆𝛿𝛿
∆𝑈𝑈�

 5. Improve volt-

ages
𝑈𝑈𝑖𝑖

(𝜇𝜇+1) = 𝑈𝑈𝑖𝑖
(𝜇𝜇) + ∆𝑈𝑈𝑖𝑖

𝛿𝛿𝑖𝑖
(𝜇𝜇+1) = 𝛿𝛿𝑖𝑖

(𝜇𝜇) + ∆𝛿𝛿𝑖𝑖
� ∀𝑖𝑖

Figure 3.1: Flowchart of the Newton-Raphson method in polar coordinates

In the following, the necessary formulas for setting up and calculating the Jacobi matrix are given.

Jacobi matrix

⎣
⎢
⎢
⎢
⎡
⋮
∆𝑃𝑃𝑖𝑖
⋮
∆𝑄𝑄𝑖𝑖
⋮ ⎦
⎥
⎥
⎥
⎤

= �
𝐻𝐻 𝑁𝑁
𝑀𝑀 𝐿𝐿�

⎣
⎢
⎢
⎢
⎡
⋮
∆𝛿𝛿𝑖𝑖
⋮
∆𝑈𝑈𝑖𝑖
⋮ ⎦
⎥
⎥
⎥
⎤

H

𝜕𝜕𝑃𝑃𝑖𝑖
𝜕𝜕𝛿𝛿𝑖𝑖

= ℎ𝑖𝑖𝑖𝑖 = −�𝑈𝑈𝑖𝑖𝑈𝑈𝑗𝑗𝑦𝑦𝑖𝑖𝑖𝑖sin(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑖𝑖)
𝑗𝑗≠𝑖𝑖

𝜕𝜕𝑃𝑃𝑖𝑖
𝜕𝜕𝛿𝛿𝑗𝑗

= ℎ𝑖𝑖𝑖𝑖 = 𝑈𝑈𝑖𝑖𝑈𝑈𝑗𝑗𝑦𝑦𝑖𝑖𝑖𝑖sin(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑖𝑖)

M

𝜕𝜕𝑄𝑄𝑖𝑖
𝜕𝜕𝛿𝛿𝑖𝑖

= 𝑚𝑚𝑖𝑖𝑖𝑖 = �𝑈𝑈𝑖𝑖𝑈𝑈𝑗𝑗𝑦𝑦𝑖𝑖𝑖𝑖cos(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑖𝑖)
𝑗𝑗≠𝑖𝑖

PSOS (1) Power flow calculation with Matlab Page 7

𝜕𝜕𝑄𝑄𝑖𝑖
𝜕𝜕𝛿𝛿𝑗𝑗

= 𝑚𝑚𝑖𝑖𝑖𝑖 = −𝑈𝑈𝑖𝑖𝑈𝑈𝑗𝑗𝑦𝑦𝑖𝑖𝑖𝑖cos(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑖𝑖)

N

𝜕𝜕𝑃𝑃𝑖𝑖
𝜕𝜕𝑈𝑈𝑖𝑖

= 𝑛𝑛𝑖𝑖𝑖𝑖 = 2𝑈𝑈𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖cos(𝜃𝜃𝑖𝑖𝑖𝑖) + �𝑈𝑈𝑗𝑗𝑦𝑦𝑖𝑖𝑖𝑖cos(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑖𝑖)
𝑗𝑗≠𝑖𝑖

𝜕𝜕𝑃𝑃𝑖𝑖
𝜕𝜕𝑈𝑈𝑗𝑗

= 𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑈𝑈𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖cos(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑖𝑖)

L

𝜕𝜕𝑄𝑄𝑖𝑖
𝜕𝜕𝑈𝑈𝑖𝑖

= 𝑙̃𝑙𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖 = 2𝑈𝑈𝑖𝑖2𝑦𝑦𝑖𝑖𝑖𝑖sin(−𝜃𝜃𝑖𝑖𝑖𝑖)− ℎ𝑖𝑖𝑖𝑖
𝜕𝜕𝑄𝑄𝑖𝑖
𝜕𝜕𝑈𝑈𝑗𝑗

= 𝑙̃𝑙𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑖𝑖𝑈𝑈𝑗𝑗 = ℎ𝑖𝑖𝑖𝑖

1. Open the function nbtp_lfnr.m and add the start values under "Task 1: Initialization".

Tip 1: Uses the Matlab functions: zeros(), abs(), angle()
Tip 2: Ssoll corresponds to the node powers, since we only calculate with PQ nodes in
the PQ-PFC.

2. Add the convergence query. You can insert it directly under the definition of epsilon.

Tip 3: The if function terminates when a "break" is used.

3. Complete the Jacobian matrix with the help of the above formulas. First create the
vector h, m, n and l and then correct the "wrong" value at the position (in,in) in the
following code line.

Tip 4: Example for h with in=1: h(1,:) = [h11, h12, h13, h14, h15]. With the next code
line h(in,in) the "wrong-calculated value" h11 is then replaced by the correct calcula-
tion. This procedure is intended to reduce the programming effort.
Tip 5 Calculation 𝒉𝒉𝒊𝒊𝒊𝒊, 𝒎𝒎𝒊𝒊𝒊𝒊 and 𝒏𝒏𝒊𝒊𝒊𝒊 : Clarify how ℎ𝑖𝑖𝑖𝑖, 𝑚𝑚𝑖𝑖𝑖𝑖 and 𝑛𝑛𝑖𝑖𝑖𝑖 are calculated! Use the
vectors calculated in the previous step (ℎ𝑖𝑖𝑖𝑖, 𝑚𝑚𝑖𝑖𝑖𝑖 and 𝑛𝑛𝑖𝑖𝑖𝑖).
Tip 6: Uses the Matlab function sum() and the element-wise multiplication .*
Tip 7: [1;1;1] + 4 = [5;5;5]

4. Now remove the reference node from the Jacobian matrix.

5. Now select "PQ-PFC only" in the GUI and press the Start button. To check the correct-
ness of the results, you can compare the correct values displayed in red with the blue
values calculated by you OR to get a quick overview, you can display the results by
calling the RMSE view of the GUI.

PSOS (1) Power flow calculation with Matlab Page 8

4 Appendix

1. Test grid image
2. Overview of important Matlab constructs

4.1 Test grid image

PSOS (1) Power flow calculation with Matlab Page 9

4.2 Overview of important Matlab constructs

help [something] %Help for command/function 'something'.
A=3; %Matrix A consists of a single element with value 3 (All variables are repre-

sented as matrices in Matlab).
A1=3+i*6; %A1 is complex: Re{A1}=3, Im{A1}=6
A2=3*exp (j*45) %A2 is complex: magnitude=3, angle=45°
B=[1,2,3]; %B is a vector with 3 elements
C=[1,2,3;4,5,6]; %C is a matrix with 2 rows and 3 columns
D=[]; %D is an empty matrix
x=inf; %x is equal to infinity
x=nan; %Value of x is undefined e.g. result of a division by 0
x=B(i); %x has the value of the i-th element of the vector B
x=C(i,j); %x has the value of the element in the i-th row and the j-th column of the ma-

trix C
x=C(i,:); %x is a vector and contains all values of the i-th row of C
x=C(i,k:l); %x is a vector and contains all values of the i-th row that belong to the col-

umns k to l
E=zeros(M,N); % (M x N) zero matrix (M x M if no N specified), i.e. E(i,j)=0
E=ones(M,N); % (M x N) matrix (M x M if no N specified) with E(i,j)=1
E=[1:1:10]; % corresponding to E=[1,2,3,4,5,6,7,8,9,10] (general E=[a:n:b] and a, b, n real
numbers)
[n,m]=size(C); %Dimensions of the matrix C
l=length(B); %length of the vector/matrix B
3*B; %all values of B are multiplied by 3
B' %Transpose a matrix/vector
C=B1 .* B2; %C(i,j) = B1(i,j)*B2(i,j) (Necessary condition: Dim(B1) = Dim(B2))
x^3; % 3x
C=B.^3; %C(i,j) = B(i,j)³
B^-1; %Inverse matrix of B
conj(U); %Conjugate complex matrix to U
abs(z); %amount of the complex number z
angle(z); %angle of the complex number z
real(z); %real part of the complex number z
imag(z); %Imaginary part of the complex number z
mod(x,y); %modulo(x,y) (in C++ syntax: x%y)

x=sum(B); % ∑=
i

ibx

x=find(B>1); %x is a vector which contains all indices of those elements of B which satisfy
the condition bi>1 (for matrices also notation (z,s)=find(C>1) is possible).

[R1,R2,...] =BelFun(matrix,vector,variable,const...);
%Function call of a function BelFun(...); the elements R1, R2 etc. are assigned
the return of the function.

function[R1,R2...]=BelFun(Matrix,Vector,Variable,const)
%Function declaration

if (x~=1)... % if-else statement (condition true if x is not equal to 1)
elseif(x>=1|x==4&h<4) %(condition true if (x >=1) or (x=4 and h<4))
 ... else ... end; %termination/termination of the statement
for (i = 1:n)...end; %count loop: i is incremented by 1 in each iteration, i runs here from 1:n
while(...)...end; %While loop
diag(ones(n,1)); %creates a unit matrix with dimension n x n
sort(C); %sorts elements of C
isempty(C); %true if C contains no elements
sin(A),cos(a) ... %sin, cos... of a number or each element of the matrix

	1 Description of the graphical interface and preparation for the tasks
	2 Task 1: Programming the power flow via the operating equipment
	3 Task 2: Programming the Newton-Raphson method in polar coordinates
	4 Appendix
	4.1 Test grid image
	4.2 Overview of important Matlab constructs

