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1 The Genesis of Fourier
Analysis

Regarding the researches of d’Alembert and Euler could
one not add that if they knew this expansion, they
made but a very imperfect use of it. They were both
persuaded that an arbitrary and discontinuous func-
tion could never be resolved in series of this kind, and
it does not even seem that anyone had developed a
constant in cosines of multiple arcs, the first problem
which I had to solve in the theory of heat.

J. Fourier, 1808-9

In the beginning, it was the problem of the vibrating string, and the
later investigation of heat flow, that led to the development of Fourier
analysis. The laws governing these distinct physical phenomena were
expressed by two different partial differential equations, the wave and
heat equations, and these were solved in terms of Fourier series.

Here we want to start by describing in some detail the development
of these ideas. We will do this initially in the context of the problem of
the vibrating string, and we will proceed in three steps. First, we de-
scribe several physical (empirical) concepts which motivate correspond-
ing mathematical ideas of importance for our study. These are: the role
of the functions cos t, sin t, and eit suggested by simple harmonic mo-
tion; the use of separation of variables, derived from the phenomenon
of standing waves; and the related concept of linearity, connected to the
superposition of tones. Next, we derive the partial differential equation
which governs the motion of the vibrating string. Finally, we will use
what we learned about the physical nature of the problem (expressed
mathematically) to solve the equation. In the last section, we use the
same approach to study the problem of heat diffusion.

Given the introductory nature of this chapter and the subject matter
covered, our presentation cannot be based on purely mathematical rea-
soning. Rather, it proceeds by plausibility arguments and aims to provide
the motivation for the further rigorous analysis in the succeeding chap-
ters. The impatient reader who wishes to begin immediately with the
theorems of the subject may prefer to pass directly to the next chapter.
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1 The vibrating string

The problem consists of the study of the motion of a string fixed at
its end points and allowed to vibrate freely. We have in mind physical
systems such as the strings of a musical instrument. As we mentioned
above, we begin with a brief description of several observable physical
phenomena on which our study is based. These are:

• simple harmonic motion,

• standing and traveling waves,

• harmonics and superposition of tones.

Understanding the empirical facts behind these phenomena will moti-
vate our mathematical approach to vibrating strings.

Simple harmonic motion

Simple harmonic motion describes the behavior of the most basic oscil-
latory system (called the simple harmonic oscillator), and is therefore
a natural place to start the study of vibrations. Consider a mass {m}
attached to a horizontal spring, which itself is attached to a fixed wall,
and assume that the system lies on a frictionless surface.

Choose an axis whose origin coincides with the center of the mass when
it is at rest (that is, the spring is neither stretched nor compressed), as
shown in Figure 1. When the mass is displaced from its initial equilibrium

m

0y y(t)y

m

0

Figure 1. Simple harmonic oscillator

position and then released, it will undergo simple harmonic motion.
This motion can be described mathematically once we have found the
differential equation that governs the movement of the mass.

Let y(t) denote the displacement of the mass at time t. We assume that
the spring is ideal, in the sense that it satisfies Hooke’s law: the restoring
force F exerted by the spring on the mass is given by F = −ky(t). Here
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k > 0 is a given physical quantity called the spring constant. Applying
Newton’s law (force = mass × acceleration), we obtain

−ky(t) = my′′(t),

where we use the notation y′′ to denote the second derivative of y with
respect to t. With c =

√
k/m, this second order ordinary differential

equation becomes

(1) y′′(t) + c2y(t) = 0.

The general solution of equation (1) is given by

y(t) = a cos ct + b sin ct ,

where a and b are constants. Clearly, all functions of this form solve
equation (1), and Exercise 6 outlines a proof that these are the only
(twice differentiable) solutions of that differential equation.

In the above expression for y(t), the quantity c is given, but a and b
can be any real numbers. In order to determine the particular solution
of the equation, we must impose two initial conditions in view of the
two unknown constants a and b. For example, if we are given y(0) and
y′(0), the initial position and velocity of the mass, then the solution of
the physical problem is unique and given by

y(t) = y(0) cos ct +
y′(0)

c
sin ct .

One can easily verify that there exist constants A > 0 and ϕ ∈ R such
that

a cos ct + b sin ct = A cos(ct− ϕ).

Because of the physical interpretation given above, one calls A =
√

a2 + b2

the “amplitude” of the motion, c its “natural frequency,” ϕ its “phase”
(uniquely determined up to an integer multiple of 2π), and 2π/c the
“period” of the motion.

The typical graph of the function A cos(ct− ϕ), illustrated in
Figure 2, exhibits a wavelike pattern that is obtained from translating
and stretching (or shrinking) the usual graph of cos t.

We make two observations regarding our examination of simple har-
monic motion. The first is that the mathematical description of the most
elementary oscillatory system, namely simple harmonic motion, involves
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Figure 2. The graph of A cos(ct− ϕ)

the most basic trigonometric functions cos t and sin t. It will be impor-
tant in what follows to recall the connection between these functions
and complex numbers, as given in Euler’s identity eit = cos t + i sin t.
The second observation is that simple harmonic motion is determined as
a function of time by two initial conditions, one determining the position,
and the other the velocity (specified, for example, at time t = 0). This
property is shared by more general oscillatory systems, as we shall see
below.

Standing and traveling waves

As it turns out, the vibrating string can be viewed in terms of one-
dimensional wave motions. Here we want to describe two kinds of mo-
tions that lend themselves to simple graphic representations.

• First, we consider standing waves. These are wavelike motions
described by the graphs y = u(x, t) developing in time t as shown
in Figure 3.

In other words, there is an initial profile y = ϕ(x) representing the
wave at time t = 0, and an amplifying factor ψ(t), depending on t,
so that y = u(x, t) with

u(x, t) = ϕ(x)ψ(t).

The nature of standing waves suggests the mathematical idea of
“separation of variables,” to which we will return later.

• A second type of wave motion that is often observed in nature is
that of a traveling wave. Its description is particularly simple:
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u(x, 0) = ϕ(x)

u(x, t0)

x

y

Figure 3. A standing wave at different moments in time: t = 0 and
t = t0

there is an initial profile F (x) so that u(x, t) equals F (x) when
t = 0. As t evolves, this profile is displaced to the right by ct units,
where c is a positive constant, namely

u(x, t) = F (x− ct).

Graphically, the situation is depicted in Figure 4.

F (x) F (x− ct0)

Figure 4. A traveling wave at two different moments in time: t = 0 and
t = t0

Since the movement in t is at the rate c, that constant represents the
velocity of the wave. The function F (x− ct) is a one-dimensional
traveling wave moving to the right. Similarly, u(x, t) = F (x + ct)
is a one-dimensional traveling wave moving to the left.
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Harmonics and superposition of tones

The final physical observation we want to mention (without going into
any details now) is one that musicians have been aware of since time
immemorial. It is the existence of harmonics, or overtones. The pure
tones are accompanied by combinations of overtones which are primar-
ily responsible for the timbre (or tone color) of the instrument. The idea
of combination or superposition of tones is implemented mathematically
by the basic concept of linearity, as we shall see below.

We now turn our attention to our main problem, that of describing the
motion of a vibrating string. First, we derive the wave equation, that is,
the partial differential equation that governs the motion of the string.

1.1 Derivation of the wave equation

Imagine a homogeneous string placed in the (x, y)-plane, and stretched
along the x-axis between x = 0 and x = L. If it is set to vibrate, its
displacement y = u(x, t) is then a function of x and t, and the goal is to
derive the differential equation which governs this function.

For this purpose, we consider the string as being subdivided into a
large number N of masses (which we think of as individual particles)
distributed uniformly along the x-axis, so that the nth particle has its
x-coordinate at xn = nL/N . We shall therefore conceive of the vibrat-
ing string as a complex system of N particles, each oscillating in the
vertical direction only ; however, unlike the simple harmonic oscillator we
considered previously, each particle will have its oscillation linked to its
immediate neighbor by the tension of the string.

yn−1
yn

yn+1

xn−1 xn+1xn

h

Figure 5. A vibrating string as a discrete system of masses
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We then set yn(t) = u(xn, t), and note that xn+1 − xn = h, with h =
L/N . If we assume that the string has constant density ρ > 0, it is
reasonable to assign mass equal to ρh to each particle. By Newton’s law,
ρhy′′n(t) equals the force acting on the nth particle. We now make the
simple assumption that this force is due to the effect of the two nearby
particles, the ones with x-coordinates at xn−1 and xn+1 (see Figure 5).
We further assume that the force (or tension) coming from the right of
the nth particle is proportional to (yn+1 − yn)/h, where h is the distance
between xn+1 and xn; hence we can write the tension as

(τ

h

)
(yn+1 − yn),

where τ > 0 is a constant equal to the coefficient of tension of the string.
There is a similar force coming from the left, and it is

(τ

h

)
(yn−1 − yn).

Altogether, adding these forces gives us the desired relation between the
oscillators yn(t), namely

(2) ρhy′′n(t) =
τ

h
{yn+1(t) + yn−1(t)− 2yn(t)} .

On the one hand, with the notation chosen above, we see that

yn+1(t) + yn−1(t)− 2yn(t) = u(xn + h, t) + u(xn − h, t)− 2u(xn, t).

On the other hand, for any reasonable function F (x) (that is, one that
has continuous second derivatives) we have

F (x + h) + F (x− h)− 2F (x)
h2

→ F ′′(x) as h → 0.

Thus we may conclude, after dividing by h in (2) and letting h tend to
zero (that is, N goes to infinity), that

ρ
∂2u

∂t2
= τ

∂2u

∂x2
,

or

1
c2

∂2u

∂t2
=

∂2u

∂x2
, with c =

√
τ/ρ.

This relation is known as the one-dimensional wave equation, or
more simply as the wave equation. For reasons that will be apparent
later, the coefficient c > 0 is called the velocity of the motion.
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In connection with this partial differential equation, we make an im-
portant simplifying mathematical remark. This has to do with scaling,
or in the language of physics, a “change of units.” That is, we can think of
the coordinate x as x = aX where a is an appropriate positive constant.
Now, in terms of the new coordinate X, the interval 0 ≤ x ≤ L becomes
0 ≤ X ≤ L/a. Similarly, we can replace the time coordinate t by t = bT ,
where b is another positive constant. If we set U(X,T ) = u(x, t), then

∂U

∂X
= a

∂u

∂x
,

∂2U

∂X2
= a2 ∂2u

∂x2
,

and similarly for the derivatives in t. So if we choose a and b appropri-
ately, we can transform the one-dimensional wave equation into

∂2U

∂T 2
=

∂2U

∂X2
,

which has the effect of setting the velocity c equal to 1. Moreover, we have
the freedom to transform the interval 0 ≤ x ≤ L to 0 ≤ X ≤ π. (We shall
see that the choice of π is convenient in many circumstances.) All this
is accomplished by taking a = L/π and b = L/(cπ). Once we solve the
new equation, we can of course return to the original equation by making
the inverse change of variables. Hence, we do not sacrifice generality by
thinking of the wave equation as given on the interval [0, π] with velocity
c = 1.

1.2 Solution to the wave equation

Having derived the equation for the vibrating string, we now explain two
methods to solve it:

• using traveling waves,

• using the superposition of standing waves.

While the first approach is very simple and elegant, it does not directly
give full insight into the problem; the second method accomplishes that,
and moreover is of wide applicability. It was first believed that the second
method applied only in the simple cases where the initial position and
velocity of the string were themselves given as a superposition of standing
waves. However, as a consequence of Fourier’s ideas, it became clear that
the problem could be worked either way for all initial conditions.
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Traveling waves

To simplify matters as before, we assume that c = 1 and L = π, so that
the equation we wish to solve becomes

∂2u

∂t2
=

∂2u

∂x2
on 0 ≤ x ≤ π.

The crucial observation is the following: if F is any twice differentiable
function, then u(x, t) = F (x + t) and u(x, t) = F (x− t) solve the wave
equation. The verification of this is a simple exercise in differentiation.
Note that the graph of u(x, t) = F (x− t) at time t = 0 is simply the
graph of F , and that at time t = 1 it becomes the graph of F translated
to the right by 1. Therefore, we recognize that F (x− t) is a traveling
wave which travels to the right with speed 1. Similarly, u(x, t) = F (x + t)
is a wave traveling to the left with speed 1. These motions are depicted
in Figure 6.

F (x + t) F (x) F (x− t)

Figure 6. Waves traveling in both directions

Our discussion of tones and their combinations leads us to observe
that the wave equation is linear. This means that if u(x, t) and v(x, t)
are particular solutions, then so is αu(x, t) + βv(x, t), where α and β
are any constants. Therefore, we may superpose two waves traveling in
opposite directions to find that whenever F and G are twice differentiable
functions, then

u(x, t) = F (x + t) + G(x− t)

is a solution of the wave equation. In fact, we now show that all solutions
take this form.

We drop for the moment the assumption that 0 ≤ x ≤ π, and suppose
that u is a twice differentiable function which solves the wave equation
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for all real x and t. Consider the following new set of variables ξ = x + t,
η = x− t, and define v(ξ, η) = u(x, t). The change of variables formula
shows that v satisfies

∂2v

∂ξ∂η
= 0.

Integrating this relation twice gives v(ξ, η) = F (ξ) + G(η), which then
implies

u(x, t) = F (x + t) + G(x− t),

for some functions F and G.

We must now connect this result with our original problem, that is,
the physical motion of a string. There, we imposed the restrictions 0 ≤
x ≤ π, the initial shape of the string u(x, 0) = f(x), and also the fact
that the string has fixed end points, namely u(0, t) = u(π, t) = 0 for all
t. To use the simple observation above, we first extend f to all of R by
making it odd1 on [−π, π], and then periodic2 in x of period 2π, and
similarly for u(x, t), the solution of our problem. Then the extension u
solves the wave equation on all of R, and u(x, 0) = f(x) for all x ∈ R.
Therefore, u(x, t) = F (x + t) + G(x− t), and setting t = 0 we find that

F (x) + G(x) = f(x).

Since many choices of F and G will satisfy this identity, this suggests
imposing another initial condition on u (similar to the two initial condi-
tions in the case of simple harmonic motion), namely the initial velocity
of the string which we denote by g(x):

∂u

∂t
(x, 0) = g(x),

where of course g(0) = g(π) = 0. Again, we extend g to R first by mak-
ing it odd over [−π, π], and then periodic of period 2π. The two initial
conditions of position and velocity now translate into the following sys-
tem:

{
F (x) + G(x) = f(x) ,
F ′(x)−G′(x) = g(x) .

1A function f defined on a set U is odd if −x ∈ U whenever x ∈ U and f(−x) = −f(x),
and even if f(−x) = f(x).

2A function f on R is periodic of period ω if f(x + ω) = f(x) for all x.
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Differentiating the first equation and adding it to the second, we obtain

2F ′(x) = f ′(x) + g(x).

Similarly

2G′(x) = f ′(x)− g(x),

and hence there are constants C1 and C2 so that

F (x) =
1
2

[
f(x) +

∫ x

0
g(y) dy

]
+ C1

and

G(x) =
1
2

[
f(x)−

∫ x

0
g(y) dy

]
+ C2.

Since F (x) + G(x) = f(x) we conclude that C1 + C2 = 0, and therefore,
our final solution of the wave equation with the given initial conditions
takes the form

u(x, t) =
1
2

[f(x + t) + f(x− t)] +
1
2

∫ x+t

x−t
g(y) dy.

The form of this solution is known as d’Alembert’s formula. Observe
that the extensions we chose for f and g guarantee that the string always
has fixed ends, that is, u(0, t) = u(π, t) = 0 for all t.

A final remark is in order. The passage from t ≥ 0 to t ∈ R, and then
back to t ≥ 0, which was made above, exhibits the time reversal property
of the wave equation. In other words, a solution u to the wave equation
for t ≥ 0, leads to a solution u− defined for negative time t < 0 simply
by setting u−(x, t) = u(x,−t), a fact which follows from the invariance
of the wave equation under the transformation t 7→ −t. The situation is
quite different in the case of the heat equation.

Superposition of standing waves

We turn to the second method of solving the wave equation, which is
based on two fundamental conclusions from our previous physical obser-
vations. By our considerations of standing waves, we are led to look for
special solutions to the wave equation which are of the form ϕ(x)ψ(t).
This procedure, which works equally well in other contexts (in the case
of the heat equation, for instance), is called separation of variables
and constructs solutions that are called pure tones. Then by the linearity
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of the wave equation, we can expect to combine these pure tones into a
more complex combination of sound. Pushing this idea further, we can
hope ultimately to express the general solution of the wave equation in
terms of sums of these particular solutions.

Note that one side of the wave equation involves only differentiation
in x, while the other, only differentiation in t. This observation pro-
vides another reason to look for solutions of the equation in the form
u(x, t) = ϕ(x)ψ(t) (that is, to “separate variables”), the hope being to
reduce a difficult partial differential equation into a system of simpler
ordinary differential equations. In the case of the wave equation, with u
of the above form, we get

ϕ(x)ψ′′(t) = ϕ′′(x)ψ(t),

and therefore

ψ′′(t)
ψ(t)

=
ϕ′′(x)
ϕ(x)

.

The key observation here is that the left-hand side depends only on t,
and the right-hand side only on x. This can happen only if both sides
are equal to a constant, say λ. Therefore, the wave equation reduces to
the following

(3)
{

ψ′′(t)− λψ(t) = 0
ϕ′′(x)− λϕ(x) = 0.

We focus our attention on the first equation in the above system. At
this point, the reader will recognize the equation we obtained in the
study of simple harmonic motion. Note that we need to consider only
the case when λ < 0, since when λ ≥ 0 the solution ψ will not oscillate
as time varies. Therefore, we may write λ = −m2, and the solution of
the equation is then given by

ψ(t) = A cosmt + B sinmt.

Similarly, we find that the solution of the second equation in (3) is

ϕ(x) = Ã cos mx + B̃ sinmx.

Now we take into account that the string is attached at x = 0 and x = π.
This translates into ϕ(0) = ϕ(π) = 0, which in turn gives Ã = 0, and
if B̃ 6= 0, then m must be an integer. If m = 0, the solution vanishes
identically, and if m ≤ −1, we may rename the constants and reduce to
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the case m ≥ 1 since the function sin y is odd and cos y is even. Finally,
we arrive at the guess that for each m ≥ 1, the function

um(x, t) = (Am cos mt + Bm sin mt) sin mx,

which we recognize as a standing wave, is a solution to the wave equa-
tion. Note that in the above argument we divided by ϕ and ψ, which
sometimes vanish, so one must actually check by hand that the standing
wave um solves the equation. This straightforward calculation is left as
an exercise to the reader.

Before proceeding further with the analysis of the wave equation, we
pause to discuss standing waves in more detail. The terminology comes
from looking at the graph of um(x, t) for each fixed t. Suppose first that
m = 1, and take u(x, t) = cos t sinx. Then, Figure 7 (a) gives the graph
of u for different values of t.

(b)(a)

0−π 2π 0 π−2π π 2π−π−2π

Figure 7. Fundamental tone (a) and overtones (b) at different moments
in time

The case m = 1 corresponds to the fundamental tone or first har-
monic of the vibrating string.

We now take m = 2 and look at u(x, t) = cos 2t sin 2x. This corre-
sponds to the first overtone or second harmonic, and this motion is
described in Figure 7 (b). Note that u(π/2, t) = 0 for all t. Such points,
which remain motionless in time, are called nodes, while points whose
motion has maximum amplitude are named anti-nodes.

For higher values of m we get more overtones or higher harmonics.
Note that as m increases, the frequency increases, and the period 2π/m
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decreases. Therefore, the fundamental tone has a lower frequency than
the overtones.

We now return to the original problem. Recall that the wave equation
is linear in the sense that if u and v solve the equation, so does αu + βv
for any constants α and β. This allows us to construct more solutions
by taking linear combinations of the standing waves um. This technique,
called superposition, leads to our final guess for a solution of the wave
equation

(4) u(x, t) =
∞∑

m=1

(Am cos mt + Bm sin mt) sin mx.

Note that the above sum is infinite, so that questions of convergence
arise, but since most of our arguments so far are formal, we will not
worry about this point now.

Suppose the above expression gave all the solutions to the wave equa-
tion. If we then require that the initial position of the string at time
t = 0 is given by the shape of the graph of the function f on [0, π], with
of course f(0) = f(π) = 0, we would have u(x, 0) = f(x), hence

∞∑

m=1

Am sin mx = f(x).

Since the initial shape of the string can be any reasonable function f , we
must ask the following basic question:

Given a function f on [0, π] (with f(0) = f(π) = 0), can we
find coefficients Am so that

(5) f(x) =
∞∑

m=1

Am sin mx ?

This question is stated loosely, but a lot of our effort in the next two
chapters of this book will be to formulate the question precisely and
attempt to answer it. This was the basic problem that initiated the
study of Fourier analysis.

A simple observation allows us to guess a formula giving Am if the
expansion (5) were to hold. Indeed, we multiply both sides by sinnx



Ibookroot October 20, 2007

1. The vibrating string 15

and integrate between [0, π]; working formally, we obtain

∫ π

0
f(x) sin nx dx =

∫ π

0

( ∞∑

m=1

Am sinmx

)
sinnx dx

=
∞∑

m=1

Am

∫ π

0
sinmx sin nx dx = An · π

2
,

where we have used the fact that
∫ π

0
sinmx sinnx dx =

{
0 if m 6= n,
π/2 if m = n.

Therefore, the guess for An, called the nth Fourier sine coefficient of f ,
is

(6) An =
2
π

∫ π

0
f(x) sin nx dx.

We shall return to this formula, and other similar ones, later.

One can transform the question about Fourier sine series on [0, π] to
a more general question on the interval [−π, π]. If we could express f
on [0, π] in terms of a sine series, then this expansion would also hold on
[−π, π] if we extend f to this interval by making it odd. Similarly, one
can ask if an even function g(x) on [−π, π] can be expressed as a cosine
series, namely

g(x) =
∞∑

m=0

A′m cosmx.

More generally, since an arbitrary function F on [−π, π] can be expressed
as f + g, where f is odd and g is even,3 we may ask if F can be written
as

F (x) =
∞∑

m=1

Am sin mx +
∞∑

m=0

A′m cosmx,

or by applying Euler’s identity eix = cos x + i sinx, we could hope that
F takes the form

F (x) =
∞∑

m=−∞
ameimx.

3Take, for example, f(x) = [F (x)− F (−x)]/2 and g(x) = [F (x) + F (−x)]/2.
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By analogy with (6), we can use the fact that

1
2π

∫ π

−π
eimxe−inx dx =

{
0 if n 6= m
1 if n = m,

to see that one expects that

an =
1
2π

∫ π

−π
F (x)e−inx dx.

The quantity an is called the nth Fourier coefficient of F .
We can now reformulate the problem raised above:

Question: Given any reasonable function F on [−π, π], with
Fourier coefficients defined above, is it true that

(7) F (x) =
∞∑

m=−∞
ameimx ?

This formulation of the problem, in terms of complex exponentials, is
the form we shall use the most in what follows.

Joseph Fourier (1768-1830) was the first to believe that an “arbitrary”
function F could be given as a series (7). In other words, his idea was
that any function is the linear combination (possibly infinite) of the most
basic trigonometric functions sinmx and cos mx, where m ranges over
the integers.4 Although this idea was implicit in earlier work, Fourier had
the conviction that his predecessors lacked, and he used it in his study
of heat diffusion; this began the subject of “Fourier analysis.” This
discipline, which was first developed to solve certain physical problems,
has proved to have many applications in mathematics and other fields as
well, as we shall see later.

We return to the wave equation. To formulate the problem correctly,
we must impose two initial conditions, as our experience with simple
harmonic motion and traveling waves indicated. The conditions assign
the initial position and velocity of the string. That is, we require that u
satisfy the differential equation and the two conditions

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x),

4The first proof that a general class of functions can be represented by Fourier series
was given later by Dirichlet; see Problem 6, Chapter 4.
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where f and g are pre-assigned functions. Note that this is consistent
with (4) in that this requires that f and g be expressible as

f(x) =
∞∑

m=1

Am sinmx and g(x) =
∞∑

m=1

mBm sinmx.

1.3 Example: the plucked string

We now apply our reasoning to the particular problem of the plucked
string. For simplicity we choose units so that the string is taken on the
interval [0, π], and it satisfies the wave equation with c = 1. The string is
assumed to be plucked to height h at the point p with 0 < p < π; this is
the initial position. That is, we take as our initial position the triangular
shape given by

f(x) =





xh

p
for 0 ≤ x ≤ p

h(π − x)
π − p

for p ≤ x ≤ π,

which is depicted in Figure 8.

0

h

p π

Figure 8. Initial position of a plucked string

We also choose an initial velocity g(x) identically equal to 0. Then, we
can compute the Fourier coefficients of f (Exercise 9), and assuming that
the answer to the question raised before (5) is positive, we obtain

f(x) =
∞∑

m=1

Am sinmx with Am =
2h

m2

sinmp

p(π − p)
.
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Thus

(8) u(x, t) =
∞∑

m=1

Am cos mt sinmx,

and note that this series converges absolutely. The solution can also be
expressed in terms of traveling waves. In fact

(9) u(x, t) =
f(x + t) + f(x− t)

2
.

Here f(x) is defined for all x as follows: first, f is extended to [−π, π] by
making it odd, and then f is extended to the whole real line by making
it periodic of period 2π, that is, f(x + 2πk) = f(x) for all integers k.

Observe that (8) implies (9) in view of the trigonometric identity

cos v sinu =
1
2

[sin(u + v) + sin(u− v)].

As a final remark, we should note an unsatisfactory aspect of the so-
lution to this problem, which however is in the nature of things. Since
the initial data f(x) for the plucked string is not twice continuously dif-
ferentiable, neither is the function u (given by (9)). Hence u is not truly
a solution of the wave equation: while u(x, t) does represent the position
of the plucked string, it does not satisfy the partial differential equation
we set out to solve! This state of affairs may be understood properly
only if we realize that u does solve the equation, but in an appropriate
generalized sense. A better understanding of this phenomenon requires
ideas relevant to the study of “weak solutions” and the theory of “dis-
tributions.” These topics we consider only later, in Books III and IV.

2 The heat equation

We now discuss the problem of heat diffusion by following the same
framework as for the wave equation. First, we derive the time-dependent
heat equation, and then study the steady-state heat equation in the disc,
which leads us back to the basic question (7).

2.1 Derivation of the heat equation

Consider an infinite metal plate which we model as the plane R2, and
suppose we are given an initial heat distribution at time t = 0. Let the
temperature at the point (x, y) at time t be denoted by u(x, y, t).
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Consider a small square centered at (x0, y0) with sides parallel to the
axis and of side length h, as shown in Figure 9. The amount of heat
energy in S at time t is given by

H(t) = σ

∫ ∫

S
u(x, y, t) dx dy ,

where σ > 0 is a constant called the specific heat of the material. There-
fore, the heat flow into S is

∂H

∂t
= σ

∫ ∫

S

∂u

∂t
dx dy ,

which is approximately equal to

σh2 ∂u

∂t
(x0, y0, t),

since the area of S is h2. Now we apply Newton’s law of cooling, which
states that heat flows from the higher to lower temperature at a rate
proportional to the difference, that is, the gradient.

(x0 + h/2, y0)(x0, y0)
h

h

Figure 9. Heat flow through a small square

The heat flow through the vertical side on the right is therefore

−κh
∂u

∂x
(x0 + h/2, y0, t) ,

where κ > 0 is the conductivity of the material. A similar argument for
the other sides shows that the total heat flow through the square S is
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given by

κh

[
∂u

∂x
(x0 + h/2, y0, t)− ∂u

∂x
(x0 − h/2, y0, t)

+
∂u

∂y
(x0, y0 + h/2, t)− ∂u

∂y
(x0, y0 − h/2, t)

]
.

Applying the mean value theorem and letting h tend to zero, we find
that

σ

κ

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
;

this is called the time-dependent heat equation, often abbreviated
to the heat equation.

2.2 Steady-state heat equation in the disc

After a long period of time, there is no more heat exchange, so that
the system reaches thermal equilibrium and ∂u/∂t = 0. In this case,
the time-dependent heat equation reduces to the steady-state heat
equation

(10)
∂2u

∂x2
+

∂2u

∂y2
= 0.

The operator ∂2/∂x2 + ∂2/∂y2 is of such importance in mathematics and
physics that it is often abbreviated as 4 and given a name: the Laplace
operator or Laplacian. So the steady-state heat equation is written as

4u = 0,

and solutions to this equation are called harmonic functions.

Consider the unit disc in the plane

D = {(x, y) ∈ R2 : x2 + y2 < 1},

whose boundary is the unit circle C. In polar coordinates (r, θ), with
0 ≤ r and 0 ≤ θ < 2π, we have

D = {(r, θ) : 0 ≤ r < 1} and C = {(r, θ) : r = 1}.

The problem, often called the Dirichlet problem (for the Laplacian
on the unit disc), is to solve the steady-state heat equation in the unit
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disc subject to the boundary condition u = f on C. This corresponds to
fixing a predetermined temperature distribution on the circle, waiting a
long time, and then looking at the temperature distribution inside the
disc.

u(1, θ) = f(θ)

x

y

0

4u = 0

Figure 10. The Dirichlet problem for the disc

While the method of separation of variables will turn out to be useful
for equation (10), a difficulty comes from the fact that the boundary
condition is not easily expressed in terms of rectangular coordinates.
Since this boundary condition is best described by the coordinates (r, θ),
namely u(1, θ) = f(θ), we rewrite the Laplacian in polar coordinates. An
application of the chain rule gives (Exercise 10):

4u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
.

We now multiply both sides by r2, and since 4u = 0, we get

r2 ∂2u

∂r2
+ r

∂u

∂r
= −∂2u

∂θ2
.

Separating these variables, and looking for a solution of the form
u(r, θ) = F (r)G(θ), we find

r2F ′′(r) + rF ′(r)
F (r)

= −G′′(θ)
G(θ)

.
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Since the two sides depend on different variables, they must both be
constant, say equal to λ. We therefore get the following equations:

{
G′′(θ) + λG(θ) = 0 ,
r2F ′′(r) + rF ′(r)− λF (r) = 0.

Since G must be periodic of period 2π, this implies that λ ≥ 0 and (as
we have seen before) that λ = m2 where m is an integer; hence

G(θ) = Ã cos mθ + B̃ sinmθ.

An application of Euler’s identity, eix = cos x + i sinx, allows one to
rewrite G in terms of complex exponentials,

G(θ) = Aeimθ + Be−imθ.

With λ = m2 and m 6= 0, two simple solutions of the equation in F are
F (r) = rm and F (r) = r−m (Exercise 11 gives further information about
these solutions). If m = 0, then F (r) = 1 and F (r) = log r are two solu-
tions. If m > 0, we note that r−m grows unboundedly large as r tends
to zero, so F (r)G(θ) is unbounded at the origin; the same occurs when
m = 0 and F (r) = log r. We reject these solutions as contrary to our
intuition. Therefore, we are left with the following special functions:

um(r, θ) = r|m|eimθ, m ∈ Z.

We now make the important observation that (10) is linear , and so as
in the case of the vibrating string, we may superpose the above special
solutions to obtain the presumed general solution:

u(r, θ) =
∞∑

m=−∞
amr|m|eimθ.

If this expression gave all the solutions to the steady-state heat equation,
then for a reasonable f we should have

u(1, θ) =
∞∑

m=−∞
ameimθ = f(θ).

We therefore ask again in this context: given any reasonable function f
on [0, 2π] with f(0) = f(2π), can we find coefficients am so that

f(θ) =
∞∑

m=−∞
ameimθ ?
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Historical Note: D’Alembert (in 1747) first solved the equation of the
vibrating string using the method of traveling waves. This solution was
elaborated by Euler a year later. In 1753, D. Bernoulli proposed the
solution which for all intents and purposes is the Fourier series given
by (4), but Euler was not entirely convinced of its full generality, since
this could hold only if an “arbitrary” function could be expanded in
Fourier series. D’Alembert and other mathematicians also had doubts.
This viewpoint was changed by Fourier (in 1807) in his study of the
heat equation, where his conviction and work eventually led others to a
complete proof that a general function could be represented as a Fourier
series.

3 Exercises

1. If z = x + iy is a complex number with x, y ∈ R, we define

|z| = (x2 + y2)1/2

and call this quantity the modulus or absolute value of z.

(a) What is the geometric interpretation of |z|?

(b) Show that if |z| = 0, then z = 0.

(c) Show that if λ ∈ R, then |λz| = |λ||z|, where |λ| denotes the standard
absolute value of a real number.

(d) If z1 and z2 are two complex numbers, prove that

|z1z2| = |z1||z2| and |z1 + z2| ≤ |z1|+ |z2|.

(e) Show that if z 6= 0, then |1/z| = 1/|z|.

2. If z = x + iy is a complex number with x, y ∈ R, we define the complex
conjugate of z by

z = x− iy.

(a) What is the geometric interpretation of z?

(b) Show that |z|2 = zz.

(c) Prove that if z belongs to the unit circle, then 1/z = z.
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3. A sequence of complex numbers {wn}∞n=1 is said to converge if there exists
w ∈ C such that

lim
n→∞

|wn − w| = 0,

and we say that w is a limit of the sequence.

(a) Show that a converging sequence of complex numbers has a unique limit.

The sequence {wn}∞n=1 is said to be a Cauchy sequence if for every ε > 0 there
exists a positive integer N such that

|wn − wm| < ε whenever n,m > N.

(b) Prove that a sequence of complex numbers converges if and only if it is a
Cauchy sequence. [Hint: A similar theorem exists for the convergence of a
sequence of real numbers. Why does it carry over to sequences of complex
numbers?]

A series
∑∞

n=1 zn of complex numbers is said to converge if the sequence formed
by the partial sums

SN =
N∑

n=1

zn

converges. Let {an}∞n=1 be a sequence of non-negative real numbers such that
the series

∑
n an converges.

(c) Show that if {zn}∞n=1 is a sequence of complex numbers satisfying
|zn| ≤ an for all n, then the series

∑
n zn converges. [Hint: Use the Cauchy

criterion.]

4. For z ∈ C, we define the complex exponential by

ez =
∞∑

n=0

zn

n!
.

(a) Prove that the above definition makes sense, by showing that the series
converges for every complex number z. Moreover, show that the conver-
gence is uniform5 on every bounded subset of C.

(b) If z1, z2 are two complex numbers, prove that ez1ez2 = ez1+z2 . [Hint: Use
the binomial theorem to expand (z1 + z2)n, as well as the formula for the
binomial coefficients.]

5A sequence of functions {fn(z)}∞n=1 is said to be uniformly convergent on a set S if
there exists a function f on S so that for every ε > 0 there is an integer N such that
|fn(z)− f(z)| < ε whenever n > N and z ∈ S.
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(c) Show that if z is purely imaginary, that is, z = iy with y ∈ R, then

eiy = cos y + i sin y.

This is Euler’s identity. [Hint: Use power series.]

(d) More generally,

ex+iy = ex(cos y + i sin y)

whenever x, y ∈ R, and show that

|ex+iy| = ex.

(e) Prove that ez = 1 if and only if z = 2πki for some integer k.

(f) Show that every complex number z = x + iy can be written in the form

z = reiθ ,

where r is unique and in the range 0 ≤ r < ∞, and θ ∈ R is unique up to
an integer multiple of 2π. Check that

r = |z| and θ = arctan(y/x)

whenever these formulas make sense.

(g) In particular, i = eiπ/2. What is the geometric meaning of multiplying a
complex number by i? Or by eiθ for any θ ∈ R?

(h) Given θ ∈ R, show that

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
.

These are also called Euler’s identities.

(i) Use the complex exponential to derive trigonometric identities such as

cos(θ + ϑ) = cos θ cosϑ− sin θ sinϑ,

and then show that

2 sin θ sinϕ = cos(θ − ϕ)− cos(θ + ϕ) ,
2 sin θ cos ϕ = sin(θ + ϕ) + sin(θ − ϕ).

This calculation connects the solution given by d’Alembert in terms of
traveling waves and the solution in terms of superposition of standing
waves.
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5. Verify that f(x) = einx is periodic with period 2π and that

1
2π

∫ π

−π

einx dx =
{

1 if n = 0,
0 if n 6= 0.

Use this fact to prove that if n,m ≥ 1 we have

1
π

∫ π

−π

cos nx cosmx dx =
{

0 if n 6= m,
1 n = m,

and similarly

1
π

∫ π

−π

sin nx sinmx dx =
{

0 if n 6= m,
1 n = m.

Finally, show that
∫ π

−π

sinnx cos mxdx = 0 for any n,m.

[Hint: Calculate einxe−imx + einxeimx and einxe−imx − einxeimx.]

6. Prove that if f is a twice continuously differentiable function on R which is
a solution of the equation

f ′′(t) + c2f(t) = 0,

then there exist constants a and b such that

f(t) = a cos ct + b sin ct.

This can be done by differentiating the two functions g(t) = f(t) cos ct− c−1f ′(t) sin ct
and h(t) = f(t) sin ct + c−1f ′(t) cos ct.

7. Show that if a and b are real, then one can write

a cos ct + b sin ct = A cos(ct− ϕ),

where A =
√

a2 + b2, and ϕ is chosen so that

cosϕ =
a√

a2 + b2
and sin ϕ =

b√
a2 + b2

.

8. Suppose F is a function on (a, b) with two continuous derivatives. Show that
whenever x and x + h belong to (a, b), one may write

F (x + h) = F (x) + hF ′(x) +
h2

2
F ′′(x) + h2ϕ(h) ,
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where ϕ(h) → 0 as h → 0.
Deduce that

F (x + h) + F (x− h)− 2F (x)
h2

→ F ′′(x) as h → 0.

[Hint: This is simply a Taylor expansion. It may be obtained by noting that

F (x + h)− F (x) =
∫ x+h

x

F ′(y) dy,

and then writing F ′(y) = F ′(x) + (y − x)F ′′(x) + (y − x)ψ(y − x), where ψ(h) →
0 as h → 0.]

9. In the case of the plucked string, use the formula for the Fourier sine coeffi-
cients to show that

Am =
2h

m2

sinmp

p(π − p)
.

For what position of p are the second, fourth, . . . harmonics missing? For what
position of p are the third, sixth, . . . harmonics missing?

10. Show that the expression of the Laplacian

4 =
∂2

∂x2
+

∂2

∂y2

is given in polar coordinates by the formula

4 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
.

Also, prove that
∣∣∣∣
∂u

∂x

∣∣∣∣
2

+
∣∣∣∣
∂u

∂y

∣∣∣∣
2

=
∣∣∣∣
∂u

∂r

∣∣∣∣
2

+
1
r2

∣∣∣∣
∂u

∂θ

∣∣∣∣
2

.

11. Show that if n ∈ Z the only solutions of the differential equation

r2F ′′(r) + rF ′(r)− n2F (r) = 0,

which are twice differentiable when r > 0, are given by linear combinations of
rn and r−n when n 6= 0, and 1 and log r when n = 0.
[Hint: If F solves the equation, write F (r) = g(r)rn, find the equation satisfied
by g, and conclude that rg′(r) + 2ng(r) = c where c is a constant.]
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u = f1

u = 0

u = f0

u = 0

0

1

π

4u = 0

Figure 11. Dirichlet problem in a rectangle

4 Problem

1. Consider the Dirichlet problem illustrated in Figure 11.
More precisely, we look for a solution of the steady-state heat equation

4u = 0 in the rectangle R = {(x, y) : 0 ≤ x ≤ π, 0 ≤ y ≤ 1} that vanishes on
the vertical sides of R, and so that

u(x, 0) = f0(x) and u(x, 1) = f1(x) ,

where f0 and f1 are initial data which fix the temperature distribution on the
horizontal sides of the rectangle.

Use separation of variables to show that if f0 and f1 have Fourier expansions

f0(x) =
∞∑

k=1

Ak sin kx and f1(x) =
∞∑

k=1

Bk sin kx,

then

u(x, y) =
∞∑

k=1

(
sinh k(1− y)

sinh k
Ak +

sinh ky

sinh k
Bk

)
sin kx.

We recall the definitions of the hyperbolic sine and cosine functions:

sinh x =
ex − e−x

2
and cosh x =

ex + e−x

2
.

Compare this result with the solution of the Dirichlet problem in the strip ob-
tained in Problem 3, Chapter 5.
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Nearly fifty years had passed without any progress on
the question of analytic representation of an arbitrary
function, when an assertion of Fourier threw new light
on the subject. Thus a new era began for the de-
velopment of this part of Mathematics and this was
heralded in a stunning way by major developments in
mathematical Physics.

B. Riemann, 1854

In this chapter, we begin our rigorous study of Fourier series. We set
the stage by introducing the main objects in the subject, and then for-
mulate some basic problems which we have already touched upon earlier.

Our first result disposes of the question of uniqueness: Are two func-
tions with the same Fourier coefficients necessarily equal? Indeed, a
simple argument shows that if both functions are continuous, then in
fact they must agree.

Next, we take a closer look at the partial sums of a Fourier series. Using
the formula for the Fourier coefficients (which involves an integration),
we make the key observation that these sums can be written conveniently
as integrals:

1
2π

∫
DN (x− y)f(y) dy,

where {DN} is a family of functions called the Dirichlet kernels. The
above expression is the convolution of f with the function DN . Convo-
lutions will play a critical role in our analysis. In general, given a family
of functions {Kn}, we are led to investigate the limiting properties as n
tends to infinity of the convolutions

1
2π

∫
Kn(x− y)f(y) dy.

We find that if the family {Kn} satisfies the three important properties
of “good kernels,” then the convolutions above tend to f(x) as n →∞
(at least when f is continuous). In this sense, the family {Kn} is an
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“approximation to the identity.” Unfortunately, the Dirichlet kernels
DN do not belong to the category of good kernels, which indicates that
the question of convergence of Fourier series is subtle.

Instead of pursuing at this stage the problem of convergence, we con-
sider various other methods of summing the Fourier series of a function.
The first method, which involves averages of partial sums, leads to con-
volutions with good kernels, and yields an important theorem of Fejér.
From this, we deduce the fact that a continuous function on the circle
can be approximated uniformly by trigonometric polynomials. Second,
we may also sum the Fourier series in the sense of Abel and again en-
counter a family of good kernels. In this case, the results about convo-
lutions and good kernels lead to a solution of the Dirichlet problem for
the steady-state heat equation in the disc, considered at the end of the
previous chapter.

1 Examples and formulation of the problem

We commence with a brief description of the types of functions with
which we shall be concerned. Since the Fourier coefficients of f are
defined by

an =
1
L

∫ L

0
f(x)e−2πinx/L dx, for n ∈ Z,

where f is complex-valued on [0, L], it will be necessary to place some in-
tegrability conditions on f . We shall therefore assume for the remainder
of this book that all functions are at least Riemann integrable.1 Some-
times it will be illuminating to focus our attention on functions that
are more “regular,” that is, functions that possess certain continuity or
differentiability properties. Below, we list several classes of functions in
increasing order of generality. We emphasize that we will not generally
restrict our attention to real-valued functions, contrary to what the fol-
lowing pictures may suggest; we will almost always allow functions that
take values in the complex numbers C. Furthermore, we sometimes think
of our functions as being defined on the circle rather than an interval.
We elaborate upon this below.

1Limiting ourselves to Riemann integrable functions is natural at this elementary stage
of study of the subject. The more advanced notion of Lebesgue integrability will be taken
up in Book III.
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Everywhere continuous functions

These are the complex-valued functions f which are continuous at every
point of the segment [0, L]. A typical continuous function is sketched in
Figure 1 (a). We shall note later that continuous functions on the circle
satisfy the additional condition f(0) = f(L).

Piecewise continuous functions

These are bounded functions on [0, L] which have only finitely many
discontinuities. An example of such a function with simple discontinuities
is pictured in Figure 1 (b).

(a) (b)

0 x

y

L0 x

y

L

Figure 1. Functions on [0, L]: continuous and piecewise continuous

This class of functions is wide enough to illustrate many of the the-
orems in the next few chapters. However, for logical completeness we
consider also the more general class of Riemann integrable functions.
This more extended setting is natural since the formula for the Fourier
coefficients involves integration.

Riemann integrable functions

This is the most general class of functions we will be concerned with.
Such functions are bounded, but may have infinitely many discontinu-
ities. We recall the definition of integrability. A real-valued function f
defined on [0, L] is Riemann integrable (which we abbreviate as in-
tegrable2) if it is bounded, and if for every ε > 0, there is a subdivision
0 = x0 < x1 < · · · < xN−1 < xN = L of the interval [0, L], so that if U

2Starting in Book III, the term “integrable” will be used in the broader sense of
Lebesgue theory.
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and L are, respectively, the upper and lower sums of f for this subdivi-
sion, namely

U =
N∑

j=1

[ sup
xj−1≤x≤xj

f(x)](xj − xj−1)

and

L =
N∑

j=1

[ inf
xj−1≤x≤xj

f(x)](xj − xj−1) ,

then we have U − L < ε. Finally, we say that a complex-valued function
is integrable if its real and imaginary parts are integrable. It is worthwhile
to remember at this point that the sum and product of two integrable
functions are integrable.

A simple example of an integrable function on [0, 1] with infinitely
many discontinuities is given by

f(x) =





1 if 1/(n + 1) < x ≤ 1/n and n is odd,
0 if 1/(n + 1) < x ≤ 1/n and n is even,
0 if x = 0.

This example is illustrated in Figure 2. Note that f is discontinuous
when x = 1/n and at x = 0.

1
3

1
2

1
5

1
4

0

1

1

Figure 2. A Riemann integrable function

More elaborate examples of integrable functions whose discontinuities
are dense in the interval [0, 1] are described in Problem 1. In general,
while integrable functions may have infinitely many discontinuities, these
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functions are actually characterized by the fact that, in a precise sense,
their discontinuities are not too numerous: they are “negligible,” that is,
the set of points where an integrable function is discontinuous has “mea-
sure 0.” The reader will find further details about Riemann integration
in the appendix.

From now on, we shall always assume that our functions are integrable,
even if we do not state this requirement explicitly.

Functions on the circle

There is a natural connection between 2π-periodic functions on R like the
exponentials einθ, functions on an interval of length 2π, and functions on
the unit circle. This connection arises as follows.

A point on the unit circle takes the form eiθ, where θ is a real number
that is unique up to integer multiples of 2π. If F is a function on the
circle, then we may define for each real number θ

f(θ) = F (eiθ),

and observe that with this definition, the function f is periodic on R of
period 2π, that is, f(θ + 2π) = f(θ) for all θ. The integrability, continu-
ity and other smoothness properties of F are determined by those of f .
For instance, we say that F is integrable on the circle if f is integrable
on every interval of length 2π. Also, F is continuous on the circle if f
is continuous on R, which is the same as saying that f is continuous on
any interval of length 2π. Moreover, F is continuously differentiable if f
has a continuous derivative, and so forth.

Since f has period 2π, we may restrict it to any interval of length 2π,
say [0, 2π] or [−π, π], and still capture the initial function F on the circle.
We note that f must take the same value at the end-points of the interval
since they correspond to the same point on the circle. Conversely, any
function on [0, 2π] for which f(0) = f(2π) can be extended to a periodic
function on R which can then be identified as a function on the circle.
In particular, a continuous function f on the interval [0, 2π] gives rise to
a continuous function on the circle if and only if f(0) = f(2π).

In conclusion, functions on R that 2π-periodic, and functions on an
interval of length 2π that take on the same value at its end-points, are
two equivalent descriptions of the same mathematical objects, namely,
functions on the circle.

In this connection, we mention an item of notational usage. When
our functions are defined on an interval on the line, we often use x as
the independent variable; however, when we consider these as functions
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on the circle, we usually replace the variable x by θ. As the reader will
note, we are not strictly bound by this rule since this practice is mostly
a matter of convenience.

1.1 Main definitions and some examples

We now begin our study of Fourier analysis with the precise definition of
the Fourier series of a function. Here, it is important to pin down where
our function is originally defined. If f is an integrable function given on
an interval [a, b] of length L (that is, b− a = L), then the nth Fourier
coefficient of f is defined by

f̂(n) =
1
L

∫ b

a
f(x)e−2πinx/L dx, n ∈ Z.

The Fourier series of f is given formally3 by

∞∑
n=−∞

f̂(n)e2πinx/L.

We shall sometimes write an for the Fourier coefficients of f , and use the
notation

f(x) ∼
∞∑

n=−∞
ane2πinx/L

to indicate that the series on the right-hand side is the Fourier series of
f .

For instance, if f is an integrable function on the interval [−π, π], then
the nth Fourier coefficient of f is

f̂(n) = an =
1
2π

∫ π

−π
f(θ)e−inθ dθ, n ∈ Z,

and the Fourier series of f is

f(θ) ∼
∞∑

n=−∞
aneinθ.

Here we use θ as a variable since we think of it as an angle ranging from
−π to π.

3At this point, we do not say anything about the convergence of the series.
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Also, if f is defined on [0, 2π], then the formulas are the same as
above, except that we integrate from 0 to 2π in the definition of the
Fourier coefficients.

We may also consider the Fourier coefficients and Fourier series for a
function defined on the circle. By our previous discussion, we may think
of a function on the circle as a function f on R which is 2π-periodic.
We may restrict the function f to any interval of length 2π, for instance
[0, 2π] or [−π, π], and compute its Fourier coefficients. Fortunately, f is
periodic and Exercise 1 shows that the resulting integrals are independent
of the chosen interval. Thus the Fourier coefficients of a function on the
circle are well defined.

Finally, we shall sometimes consider a function g given on [0, 1]. Then

ĝ(n) = an =
∫ 1

0
g(x)e−2πinx dx and g(x) ∼

∞∑
n=−∞

ane2πinx.

Here we use x for a variable ranging from 0 to 1.
Of course, if f is initially given on [0, 2π], then g(x) = f(2πx) is defined

on [0, 1] and a change of variables shows that the nth Fourier coefficient
of f equals the nth Fourier coefficient of g.

Fourier series are part of a larger family called the trigonometric se-
ries which, by definition, are expressions of the form

∑∞
n=−∞ cne2πinx/L

where cn ∈ C. If a trigonometric series involves only finitely many non-
zero terms, that is, cn = 0 for all large |n|, it is called a trigonometric
polynomial; its degree is the largest value of |n| for which cn 6= 0.

The N th partial sum of the Fourier series of f , for N a positive
integer, is a particular example of a trigonometric polynomial. It is
given by

SN (f)(x) =
N∑

n=−N

f̂(n)e2πinx/L.

Note that by definition, the above sum is symmetric since n ranges from
−N to N , a choice that is natural because of the resulting decomposition
of the Fourier series as sine and cosine series. As a consequence, the
convergence of Fourier series will be understood (in this book) as the
“limit” as N tends to infinity of these symmetric sums.

In fact, using the partial sums of the Fourier series, we can reformulate
the basic question raised in Chapter 1 as follows:

Problem: In what sense does SN (f) converge to f as N →∞ ?
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Before proceeding further with this question, we turn to some simple
examples of Fourier series.

Example 1. Let f(θ) = θ for −π ≤ θ ≤ π. The calculation of the Fourier
coefficients requires a simple integration by parts. First, if n 6= 0, then

f̂(n) =
1
2π

∫ π

−π
θe−inθ dθ

=
1
2π

[
− θ

in
e−inθ

]π

−π

+
1

2πin

∫ π

−π
e−inθ dθ

=
(−1)n+1

in
,

and if n = 0 we clearly have

f̂(0) =
1
2π

∫ π

−π
θ dθ = 0.

Hence, the Fourier series of f is given by

f(θ) ∼
∑

n 6=0

(−1)n+1

in
einθ = 2

∞∑

n=1

(−1)n+1 sin nθ

n
.

The first sum is over all non-zero integers, and the second is obtained by
an application of Euler’s identities. It is possible to prove by elementary
means that the above series converges for every θ, but it is not obvious
that it converges to f(θ). This will be proved later (Exercises 8 and 9
deal with a similar situation).

Example 2. Define f(θ) = (π − θ)2/4 for 0 ≤ θ ≤ 2π. Then successive
integration by parts similar to that performed in the previous example
yield

f(θ) ∼ π2

12
+

∞∑

n=1

cos nθ

n2
.

Example 3. The Fourier series of the function

f(θ) =
π

sinπα
ei(π−θ)α

on [0, 2π] is

f(θ) ∼
∞∑

n=−∞

einθ

n + α
,
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whenever α is not an integer.

Example 4. The trigonometric polynomial defined for x ∈ [−π, π] by

DN (x) =
N∑

n=−N

einx

is called the N th Dirichlet kernel and is of fundamental importance in
the theory (as we shall see later). Notice that its Fourier coefficients an

have the property that an = 1 if |n| ≤ N and an = 0 otherwise. A closed
form formula for the Dirichlet kernel is

DN (x) =
sin((N + 1

2)x)
sin(x/2)

.

This can be seen by summing the geometric progressions

N∑

n=0

ωn and
−1∑

n=−N

ωn

with ω = eix. These sums are, respectively, equal to

1− ωN+1

1− ω
and

ω−N − 1
1− ω

.

Their sum is then

ω−N − ωN+1

1− ω
=

ω−N−1/2 − ωN+1/2

ω−1/2 − ω1/2
=

sin((N + 1
2)x)

sin(x/2)
,

giving the desired result.

Example 5. The function Pr(θ), called the Poisson kernel, is defined
for θ ∈ [−π, π] and 0 ≤ r < 1 by the absolutely and uniformly convergent
series

Pr(θ) =
∞∑

n=−∞
r|n|einθ.

This function arose implicitly in the solution of the steady-state heat
equation on the unit disc discussed in Chapter 1. Note that in calcu-
lating the Fourier coefficients of Pr(θ) we can interchange the order of
integration and summation since the sum converges uniformly in θ for
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each fixed r, and obtain that the nth Fourier coefficient equals r|n|. One
can also sum the series for Pr(θ) and see that

Pr(θ) =
1− r2

1− 2r cos θ + r2
.

In fact,

Pr(θ) =
∞∑

n=0

ωn +
∞∑

n=1

ωn with ω = reiθ,

where both series converge absolutely. The first sum (an infinite geomet-
ric progression) equals 1/(1− ω), and likewise, the second is ω/(1− ω).
Together, they combine to give

1− ω + (1− ω)ω
(1− ω)(1− ω)

=
1− |ω|2
|1− ω|2 =

1− r2

1− 2r cos θ + r2
,

as claimed. The Poisson kernel will reappear later in the context of Abel
summability of the Fourier series of a function.

Let us return to the problem formulated earlier. The definition of
the Fourier series of f is purely formal, and it is not obvious whether it
converges to f . In fact, the solution of this problem can be very hard,
or relatively easy, depending on the sense in which we expect the series
to converge, or on what additional restrictions we place on f .

Let us be more precise. Suppose, for the sake of this discussion, that
the function f (which is always assumed to be Riemann integrable) is
defined on [−π, π]. The first question one might ask is whether the partial
sums of the Fourier series of f converge to f pointwise. That is, do we
have

(1) lim
N→∞

SN (f)(θ) = f(θ) for every θ?

We see quite easily that in general we cannot expect this result to be
true at every θ, since we can always change an integrable function at one
point without changing its Fourier coefficients. As a result, we might
ask the same question assuming that f is continuous and periodic. For
a long time it was believed that under these additional assumptions the
answer would be “yes.” It was a surprise when Du Bois-Reymond showed
that there exists a continuous function whose Fourier series diverges at
a point. We will give such an example in the next chapter. Despite this
negative result, we might ask what happens if we add more smoothness
conditions on f : for example, we might assume that f is continuously
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differentiable, or twice continuously differentiable. We will see that then
the Fourier series of f converges to f uniformly.

We will also interpret the limit (1) by showing that the Fourier series
sums, in the sense of Cesàro or Abel, to the function f at all of its points
of continuity. This approach involves appropriate averages of the partial
sums of the Fourier series of f .

Finally, we can also define the limit (1) in the mean square sense. In
the next chapter, we will show that if f is merely integrable, then

1
2π

∫ π

−π
|SN (f)(θ)− f(θ)|2 dθ → 0 as N →∞.

It is of interest to know that the problem of pointwise convergence of
Fourier series was settled in 1966 by L. Carleson, who showed, among
other things, that if f is integrable in our sense,4 then the Fourier series
of f converges to f except possibly on a set of “measure 0.” The proof
of this theorem is difficult and beyond the scope of this book.

2 Uniqueness of Fourier series

If we were to assume that the Fourier series of functions f converge to f
in an appropriate sense, then we could infer that a function is uniquely
determined by its Fourier coefficients. This would lead to the following
statement: if f and g have the same Fourier coefficients, then f and g
are necessarily equal. By taking the difference f − g, this proposition
can be reformulated as: if f̂(n) = 0 for all n ∈ Z, then f = 0. As stated,
this assertion cannot be correct without reservation, since calculating
Fourier coefficients requires integration, and we see that, for example,
any two functions which differ at finitely many points have the same
Fourier series. However, we do have the following positive result.

Theorem 2.1 Suppose that f is an integrable function on the circle with
f̂(n) = 0 for all n ∈ Z. Then f(θ0) = 0 whenever f is continuous at the
point θ0.

Thus, in terms of what we know about the set of discontinuities of in-
tegrable functions,5 we can conclude that f vanishes for “most” values
of θ.

Proof. We suppose first that f is real-valued, and argue by con-
tradiction. Assume, without loss of generality, that f is defined on

4Carleson’s proof actually holds for the wider class of functions which are square inte-
grable in the Lebesgue sense.

5See the appendix.
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[−π, π], that θ0 = 0, and f(0) > 0. The idea now is to construct a fam-
ily of trigonometric polynomials {pk} that “peak” at 0, and so that∫

pk(θ)f(θ) dθ →∞ as k →∞. This will be our desired contradiction
since these integrals are equal to zero by assumption.

Since f is continuous at 0, we can choose 0 < δ ≤ π/2, so that f(θ) >
f(0)/2 whenever |θ| < δ. Let

p(θ) = ε + cos θ,

where ε > 0 is chosen so small that |p(θ)| < 1− ε/2, whenever δ ≤ |θ| ≤
π. Then, choose a positive η with η < δ, so that p(θ) ≥ 1 + ε/2, for
|θ| < η. Finally, let

pk(θ) = [p(θ)]k,

and select B so that |f(θ)| ≤ B for all θ. This is possible since f is
integrable, hence bounded. Figure 3 illustrates the family {pk}. By

p

p6

p15

Figure 3. The functions p, p6, and p15 when ε = 0.1

construction, each pk is a trigonometric polynomial, and since f̂(n) = 0
for all n, we must have

∫ π

−π
f(θ)pk(θ) dθ = 0 for all k.

However, we have the estimate
∣∣∣∣∣
∫

δ≤|θ|
f(θ)pk(θ) dθ

∣∣∣∣∣ ≤ 2πB(1− ε/2)k.
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Also, our choice of δ guarantees that p(θ) and f(θ) are non-negative
whenever |θ| < δ, thus

∫

η≤|θ|<δ
f(θ)pk(θ) dθ ≥ 0.

Finally,
∫

|θ|<η
f(θ)pk(θ) dθ ≥ 2η

f(0)
2

(1 + ε/2)k.

Therefore,
∫

pk(θ)f(θ) dθ →∞ as k →∞, and this concludes the proof
when f is real-valued. In general, write f(θ) = u(θ) + iv(θ), where u and
v are real-valued. If we define f(θ) = f(θ), then

u(θ) =
f(θ) + f(θ)

2
and v(θ) =

f(θ)− f(θ)
2i

,

and since f̂(n) = f̂(−n), we conclude that the Fourier coefficients of u
and v all vanish, hence f = 0 at its points of continuity. The idea

of constructing a family of functions (trigonometric polynomials in this
case) which peak at the origin, together with other nice properties, will
play an important role in this book. Such families of functions will be
taken up later in Section 4 in connection with the notion of convolution.
For now, note that the above theorem implies the following.

Corollary 2.2 If f is continuous on the circle and f̂(n) = 0 for all
n ∈ Z, then f = 0.

The next corollary shows that the problem (1) formulated earlier has a
simple positive answer under the assumption that the series of Fourier
coefficients converges absolutely.

Corollary 2.3 Suppose that f is a continuous function on the circle and
that the Fourier series of f is absolutely convergent,

∑∞
n=−∞ |f̂(n)| < ∞.

Then, the Fourier series converges uniformly to f , that is,

lim
N→∞

SN (f)(θ) = f(θ) uniformly in θ.

Proof. Recall that if a sequence of continuous functions converges
uniformly, then the limit is also continuous. Now observe that the
assumption

∑ |f̂(n)| < ∞ implies that the partial sums of the Fourier
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series of f converge absolutely and uniformly, and therefore the function
g defined by

g(θ) =
∞∑

n=−∞
f̂(n)einθ = lim

N→∞

N∑

n=−N

f̂(n)einθ

is continuous on the circle. Moreover, the Fourier coefficients of g are
precisely f̂(n) since we can interchange the infinite sum with the integral
(a consequence of the uniform convergence of the series). Therefore, the
previous corollary applied to the function f − g yields f = g, as desired.
What conditions on f would guarantee the absolute convergence of its

Fourier series? As it turns out, the smoothness of f is directly related
to the decay of the Fourier coefficients, and in general, the smoother the
function, the faster this decay. As a result, we can expect that relatively
smooth functions equal their Fourier series. This is in fact the case, as
we now show.

In order to state the result concisely we introduce the standard “O”
notation, which we will use freely in the rest of this book. For exam-
ple, the statement f̂(n) = O(1/|n|2) as |n| → ∞, means that the left-
hand side is bounded by a constant multiple of the right-hand side;
that is, there exists C > 0 with |f̂(n)| ≤ C/|n|2 for all large |n|. More
generally, f(x) = O(g(x)) as x → a means that for some constant C,
|f(x)| ≤ C|g(x)| as x approaches a. In particular, f(x) = O(1) means
that f is bounded.

Corollary 2.4 Suppose that f is a twice continuously differentiable func-
tion on the circle. Then

f̂(n) = O(1/|n|2) as |n| → ∞,

so that the Fourier series of f converges absolutely and uniformly to f .
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Proof. The estimate on the Fourier coefficients is proved by integrating
by parts twice for n 6= 0. We obtain

2πf̂(n) =
∫ 2π

0
f(θ)e−inθ dθ

=

[
f(θ) · −e−inθ

in

]2π

0

+
1
in

∫ 2π

0
f ′(θ)e−inθ dθ

=
1
in

∫ 2π

0
f ′(θ)e−inθ dθ

=
1
in

[
f ′(θ) · −e−inθ

in

]2π

0

+
1

(in)2

∫ 2π

0
f ′′(θ)e−inθ dθ

=
−1
n2

∫ 2π

0
f ′′(θ)e−inθ dθ.

The quantities in brackets vanish since f and f ′ are periodic. Therefore

2π|n|2|f̂(n)| ≤
∣∣∣∣
∫ 2π

0
f ′′(θ)e−inθ dθ

∣∣∣∣ ≤
∫ 2π

0
|f ′′(θ)| dθ ≤ C,

where the constant C is independent of n. (We can take C = 2πB where
B is a bound for f ′′.) Since

∑
1/n2 converges, the proof of the corollary

is complete.

Incidentally, we have also established the following important identity:

f̂ ′(n) = inf̂(n), for all n ∈ Z.

If n 6= 0 the proof is given above, and if n = 0 it is left as an exercise to the
reader. So if f is differentiable and f ∼ ∑

aneinθ, then f ′ ∼ ∑
anineinθ.

Also, if f is twice continuously differentiable, then f ′′ ∼ ∑
an(in)2einθ,

and so on. Further smoothness conditions on f imply even better decay
of the Fourier coefficients (Exercise 10).

There are also stronger versions of Corollary 2.4. It can be shown, for
example, that the Fourier series of f converges absolutely, assuming only
that f has one continuous derivative. Even more generally, the Fourier
series of f converges absolutely (and hence uniformly to f) if f satisfies
a Hölder condition of order α, with α > 1/2, that is,

sup
θ
|f(θ + t)− f(θ)| ≤ A|t|α for all t.

For more on these matters, see the exercises at the end of Chapter 3.
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At this point it is worthwhile to introduce a common notation: we say
that f belongs to the class Ck if f is k times continuously differentiable.
Belonging to the class Ck or satisfying a Hölder condition are two possible
ways to describe the smoothness of a function.

3 Convolutions

The notion of convolution of two functions plays a fundamental role in
Fourier analysis; it appears naturally in the context of Fourier series but
also serves more generally in the analysis of functions in other settings.

Given two 2π-periodic integrable functions f and g on R, we define
their convolution f ∗ g on [−π, π] by

(2) (f ∗ g)(x) =
1
2π

∫ π

−π
f(y)g(x− y) dy.

The above integral makes sense for each x, since the product of two
integrable functions is again integrable. Also, since the functions are
periodic, we can change variables to see that

(f ∗ g)(x) =
1
2π

∫ π

−π
f(x− y)g(y) dy.

Loosely speaking, convolutions correspond to “weighted averages.” For
instance, if g = 1 in (2), then f ∗ g is constant and equal to 1

2π

∫ π
−π f(y) dy,

which we may interpret as the average value of f on the circle. Also, the
convolution (f ∗ g)(x) plays a role similar to, and in some sense replaces,
the pointwise product f(x)g(x) of the two functions f and g.

In the context of this chapter, our interest in convolutions originates
from the fact that the partial sums of the Fourier series of f can be
expressed as follows:

SN (f)(x) =
N∑

n=−N

f̂(n)einx

=
N∑

n=−N

(
1
2π

∫ π

−π
f(y)e−iny dy

)
einx

=
1
2π

∫ π

−π
f(y)

(
N∑

n=−N

ein(x−y)

)
dy

= (f ∗DN )(x),
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where DN is the N th Dirichlet kernel (see Example 4) given by

DN (x) =
N∑

n=−N

einx.

So we observe that the problem of understanding SN (f) reduces to the
understanding of the convolution f ∗DN .

We begin by gathering some of the main properties of convolutions.

Proposition 3.1 Suppose that f , g, and h are 2π-periodic integrable
functions. Then:

(i) f ∗ (g + h) = (f ∗ g) + (f ∗ h).

(ii) (cf) ∗ g = c(f ∗ g) = f ∗ (cg) for any c ∈ C.

(iii) f ∗ g = g ∗ f .

(iv) (f ∗ g) ∗ h = f ∗ (g ∗ h).

(v) f ∗ g is continuous.

(vi) f̂ ∗ g(n) = f̂(n)ĝ(n).

The first four points describe the algebraic properties of convolutions:
linearity, commutativity, and associativity. Property (v) exhibits an im-
portant principle: the convolution of f ∗ g is “more regular” than f or g.
Here, f ∗ g is continuous while f and g are merely (Riemann) integrable.
Finally, (vi) is key in the study of Fourier series. In general, the Fourier
coefficients of the product fg are not the product of the Fourier coeffi-
cients of f and g. However, (vi) says that this relation holds if we replace
the product of the two functions f and g by their convolution f ∗ g.

Proof. Properties (i) and (ii) follow at once from the linearity of the
integral.

The other properties are easily deduced if we assume also that f and
g are continuous. In this case, we may freely interchange the order of
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integration. For instance, to establish (vi) we write

f̂ ∗ g(n) =
1
2π

∫ π

−π
(f ∗ g)(x)e−inx dx

=
1
2π

∫ π

−π

1
2π

(∫ π

−π
f(y)g(x− y) dy

)
e−inx dx

=
1
2π

∫ π

−π
f(y)e−iny

(
1
2π

∫ π

−π
g(x− y)e−in(x−y) dx

)
dy

=
1
2π

∫ π

−π
f(y)e−iny

(
1
2π

∫ π

−π
g(x)e−inx dx

)
dy

= f̂(n)ĝ(n).

To prove (iii), one first notes that if F is continuous and 2π-periodic,
then

∫ π

−π
F (y) dy =

∫ π

−π
F (x− y) dy for any x ∈ R.

The verification of this identity consists of a change of variables y 7→ −y,
followed by a translation y 7→ y − x. Then, one takes F (y) = f(y)g(x− y).

Also, (iv) follows by interchanging two integral signs, and an appro-
priate change of variables.

Finally, we show that if f and g are continuous, then f ∗ g is continu-
ous. First, we may write

(f ∗ g)(x1)− (f ∗ g)(x2) =
1
2π

∫ π

−π
f(y) [g(x1 − y)− g(x2 − y)] dy.

Since g is continuous it must be uniformly continuous on any closed
and bounded interval. But g is also periodic, so it must be uniformly
continuous on all of R; given ε > 0 there exists δ > 0 so that |g(s)−
g(t)| < ε whenever |s− t| < δ. Then, |x1 − x2| < δ implies |(x1 − y)−
(x2 − y)| < δ for any y, hence

|(f ∗ g)(x1)− (f ∗ g)(x2)| ≤ 1
2π

∣∣∣∣
∫ π

−π
f(y) [g(x1 − y)− g(x2 − y)] dy

∣∣∣∣

≤ 1
2π

∫ π

−π
|f(y)| |g(x1 − y)− g(x2 − y)| dy

≤ ε

2π

∫ π

−π
|f(y)| dy

≤ ε

2π
2π B ,
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where B is chosen so that |f(x)| ≤ B for all x. As a result, we conclude
that f ∗ g is continuous, and the proposition is proved, at least when f
and g are continuous.

In general, when f and g are merely integrable, we may use the re-
sults established so far (when f and g are continuous), together with
the following approximation lemma, whose proof may be found in the
appendix.

Lemma 3.2 Suppose f is integrable on the circle and bounded by B.
Then there exists a sequence {fk}∞k=1 of continuous functions on the
circle so that

sup
x∈[−π,π]

|fk(x)| ≤ B for all k = 1, 2, . . . ,

and ∫ π

−π
|f(x)− fk(x)| dx → 0 as k →∞.

Using this result, we may complete the proof of the proposition as
follows. Apply Lemma 3.2 to f and g to obtain sequences {fk} and {gk}
of approximating continuous functions. Then

f ∗ g − fk ∗ gk = (f − fk) ∗ g + fk ∗ (g − gk).

By the properties of the sequence {fk},

|(f − fk) ∗ g(x)| ≤ 1
2π

∫ π

−π
|f(x− y)− fk(x− y)| |g(y)| dy

≤ 1
2π

sup
y
|g(y)|

∫ π

−π
|f(y)− fk(y)| dy

→ 0 as k →∞.

Hence (f − fk) ∗ g → 0 uniformly in x. Similarly, fk ∗ (g − gk) → 0 uni-
formly, and therefore fk ∗ gk tends uniformly to f ∗ g. Since each fk ∗ gk

is continuous, it follows that f ∗ g is also continuous, and we have (v).
Next, we establish (vi). For each fixed integer n we must have

f̂k ∗ gk(n) → f̂ ∗ g(n) as k tends to infinity since fk ∗ gk converges uni-
formly to f ∗ g. However, we found earlier that f̂k(n)ĝk(n) = f̂k ∗ gk(n)
because both fk and gk are continuous. Hence

|f̂(n)− f̂k(n)|= 1
2π

∣∣∣∣
∫ π

−π
(f(x)− fk(x))e−inx dx

∣∣∣∣

≤ 1
2π

∫ π

−π
|f(x)− fk(x)| dx,
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and as a result we find that f̂k(n) → f̂(n) as k goes to infinity. Similarly
ĝk(n) → ĝ(n), and the desired property is established once we let k tend
to infinity. Finally, properties (iii) and (iv) follow from the same kind of
arguments.

4 Good kernels

In the proof of Theorem 2.1 we constructed a sequence of trigonometric
polynomials {pk} with the property that the functions pk peaked at the
origin. As a result, we could isolate the behavior of f at the origin. In
this section, we return to such families of functions, but this time in a
more general setting. First, we define the notion of good kernel, and
discuss the characteristic properties of such functions. Then, by the use
of convolutions, we show how these kernels can be used to recover a given
function.

A family of kernels {Kn(x)}∞n=1 on the circle is said to be a family of
good kernels if it satisfies the following properties:

(a) For all n ≥ 1,
1
2π

∫ π

−π
Kn(x) dx = 1.

(b) There exists M > 0 such that for all n ≥ 1,
∫ π

−π
|Kn(x)| dx ≤ M.

(c) For every δ > 0,
∫

δ≤|x|≤π
|Kn(x)| dx → 0, as n →∞.

In practice we shall encounter families where Kn(x) ≥ 0, in which
case (b) is a consequence of (a). We may interpret the kernels Kn(x)
as weight distributions on the circle: property (a) says that Kn assigns
unit mass to the whole circle [−π, π], and (c) that this mass concentrates
near the origin as n becomes large.6 Figure 4 (a) illustrates the typical
character of a family of good kernels.

The importance of good kernels is highlighted by their use in connec-
tion with convolutions.

6In the limit, a family of good kernels represents the “Dirac delta function.” This
terminology comes from physics.
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(a) (b)
y

Kn(y)

y = 0

f(x− y) f(x)

Figure 4. Good kernels

Theorem 4.1 Let {Kn}∞n=1 be a family of good kernels, and f an inte-
grable function on the circle. Then

lim
n→∞(f ∗Kn)(x) = f(x)

whenever f is continuous at x. If f is continuous everywhere, then the
above limit is uniform.

Because of this result, the family {Kn} is sometimes referred to as an
approximation to the identity.

We have previously interpreted convolutions as weighted averages. In
this context, the convolution

(f ∗Kn)(x) =
1
2π

∫ π

−π
f(x− y)Kn(y) dy

is the average of f(x− y), where the weights are given by Kn(y). How-
ever, the weight distribution Kn concentrates its mass at y = 0 as n
becomes large. Hence in the integral, the value f(x) is assigned the full
mass as n →∞. Figure 4 (b) illustrates this point.

Proof of Theorem 4.1. If ε > 0 and f is continuous at x, choose δ so
that |y| < δ implies |f(x− y)− f(x)| < ε. Then, by the first property of
good kernels, we can write

(f ∗Kn)(x)− f(x) =
1
2π

∫ π

−π
Kn(y)f(x− y) dy − f(x)

=
1
2π

∫ π

−π
Kn(y)[f(x− y)− f(x)] dy.
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Hence,

|(f ∗Kn)(x)− f(x)| =
∣∣∣∣

1
2π

∫ π

−π
Kn(y)[f(x− y)− f(x)] dy

∣∣∣∣

≤ 1
2π

∫

|y|<δ
|Kn(y)| |f(x− y)− f(x)| dy

+
1
2π

∫

δ≤|y|≤π
|Kn(y)| |f(x− y)− f(x)| dy

≤ ε

2π

∫ π

−π
|Kn(y)| dy +

2B

2π

∫

δ≤|y|≤π
|Kn(y)| dy,

where B is a bound for f . The first term is bounded by εM/2π because
of the second property of good kernels. By the third property we see
that for all large n, the second term will be less than ε. Therefore, for
some constant C > 0 and all large n we have

|(f ∗Kn)(x)− f(x)| ≤ Cε,

thereby proving the first assertion in the theorem. If f is continuous
everywhere, then it is uniformly continuous, and δ can be chosen in-
dependent of x. This provides the desired conclusion that f ∗Kn → f
uniformly.

Recall from the beginning of Section 3 that

SN (f)(x) = (f ∗DN )(x) ,

where DN (x) =
∑N

n=−N einx is the Dirichlet kernel. It is natural now for
us to ask whether DN is a good kernel, since if this were true, Theorem 4.1
would imply that the Fourier series of f converges to f(x) whenever f is
continuous at x. Unfortunately, this is not the case. Indeed, an estimate
shows that DN violates the second property; more precisely, one has (see
Problem 2)

∫ π

−π
|DN (x)| dx ≥ c log N, as N →∞.

However, we should note that the formula for DN as a sum of exponen-
tials immediately gives

1
2π

∫ π

−π
DN (x) dx = 1,

so the first property of good kernels is actually verified. The fact that the
mean value of DN is 1, while the integral of its absolute value is large,
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is a result of cancellations. Indeed, Figure 5 shows that the function
DN (x) takes on positive and negative values and oscillates very rapidly
as N gets large.

Figure 5. The Dirichlet kernel for large N

This observation suggests that the pointwise convergence of Fourier
series is intricate, and may even fail at points of continuity. This is
indeed the case, as we will see in the next chapter.

5 Cesàro and Abel summability: applications to Fourier

series

Since a Fourier series may fail to converge at individual points, we are
led to try to overcome this failure by interpreting the limit

lim
N→∞

SN (f) = f

in a different sense.

5.1 Cesàro means and summation

We begin by taking ordinary averages of the partial sums, a technique
which we now describe in more detail.
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Suppose we are given a series of complex numbers

c0 + c1 + c2 + · · · =
∞∑

k=0

ck.

We define the nth partial sum sn by

sn =
n∑

k=0

ck,

and say that the series converges to s if limn→∞ sn = s. This is the
most natural and most commonly used type of “summability.” Consider,
however, the example of the series

(3) 1− 1 + 1− 1 + · · · =
∞∑

k=0

(−1)k.

Its partial sums form the sequence {1, 0, 1, 0, . . .} which has no limit.
Because these partial sums alternate evenly between 1 and 0, one might
therefore suggest that 1/2 is the “limit” of the sequence, and hence 1/2
equals the “sum” of that particular series. We give a precise meaning to
this by defining the average of the first N partial sums by

σN =
s0 + s1 + · · ·+ sN−1

N
.

The quantity σN is called the N th Cesàro mean7 of the sequence {sk}
or the N th Cesàro sum of the series

∑∞
k=0 ck.

If σN converges to a limit σ as N tends to infinity, we say that the
series

∑
cn is Cesàro summable to σ. In the case of series of functions,

we shall understand the limit in the sense of either pointwise or uniform
convergence, depending on the situation.

The reader will have no difficulty checking that in the above exam-
ple (3), the series is Cesàro summable to 1/2. Moreover, one can show
that Cesàro summation is a more inclusive process than convergence. In
fact, if a series is convergent to s, then it is also Cesàro summable to the
same limit s (Exercise 12).

5.2 Fejér’s theorem

An interesting application of Cesàro summability appears in the context
of Fourier series.

7Note that if the series
∑∞

k=1
ck begins with the term k = 1, then it is common prac-

tice to define σN = (s1 + · · ·+ sN )/N . This change of notation has little effect on what
follows.
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We mentioned earlier that the Dirichlet kernels fail to belong to the
family of good kernels. Quite surprisingly, their averages are very well
behaved functions, in the sense that they do form a family of good ker-
nels.

To see this, we form the N th Cesàro mean of the Fourier series, which
by definition is

σN (f)(x) =
S0(f)(x) + · · ·+ SN−1(f)(x)

N
.

Since Sn(f) = f ∗Dn, we find that

σN (f)(x) = (f ∗ FN )(x),

where FN (x) is the N -th Fejér kernel given by

FN (x) =
D0(x) + · · ·+ DN−1(x)

N
.

Lemma 5.1 We have

FN (x) =
1
N

sin2(Nx/2)
sin2(x/2)

,

and the Fejér kernel is a good kernel.

The proof of the formula for FN (a simple application of trigonometric
identities) is outlined in Exercise 15. To prove the rest of the lemma, note
that FN is positive and 1

2π

∫ π
−π FN (x) dx = 1, in view of the fact that a

similar identity holds for the Dirichlet kernels Dn. However, sin2(x/2) ≥
cδ > 0, if δ ≤ |x| ≤ π, hence FN (x) ≤ 1/(Ncδ), from which it follows that

∫

δ≤|x|≤π
|FN (x)| dx → 0 as N →∞.

Applying Theorem 4.1 to this new family of good kernels yields the
following important result.

Theorem 5.2 If f is integrable on the circle, then the Fourier series of
f is Cesàro summable to f at every point of continuity of f .

Moreover, if f is continuous on the circle, then the Fourier series of
f is uniformly Cesàro summable to f .

We may now state two corollaries. The first is a result that we have
already established. The second is new, and of fundamental importance.


