

Prof. Dr. Ivan Veselić

M.Sc. Alexander Dicke

Ideen und Aufgabenvorschläge

Analysis I für Lehramt

im Wintersemester 2021/22

Aufgabe 1)

Sei $(x_n)_{n\in\mathbb{N}}$ eine beschränkte, reelle Folge. Zeigen Sie den Satz von Bolzano-Weierstraß mit Hilfe eines Bisektionsverfahrens.

Anleitung: Sei I_0 ein Intervall derart, dass $\{x_n \colon n \in \mathbb{N}\} \subset I_0$ und sei l > 0 die Länge des Intervalls I_0 . Zeigen Sie, dass es Intervalle I_k , $k \in \mathbb{N}_0$, gibt mit den folgenden Eigenschaften:

- (i) I_k enthält unendlich viele Folgenglieder,
- (ii) $I_{k+1} \subset I_k$ für alle $k \in \mathbb{N}_0$,
- (iii) I_k ist ein Intervall der Länge $l \cdot 2^{-k}$.

Nutzen Sie nun Aufgabe 4 von Übungsblatt 5.

Aufgabe 2)

Sei $\rho \in \mathbb{R}$ und $f_{\rho} \colon \mathbb{R} \to \mathbb{R}$ definiert durch

$$f_{\rho}(x) = \begin{cases} x^7 - 90x + 4 & \text{für } x > 1 \\ -x^3 + \rho x^2 + 7 & \text{für } x \le 1 \end{cases}.$$

Bestimmen Sie alle ρ so, dass f_{ρ} stetig ist.

Aufgabe 3)

Zeigen Sie die Stetigkeit der Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \frac{1}{1+x^2}$$

in jedem $x_0 \in \mathbb{R}$

- (a) anhand der Definition,
- (b) mit Hilfe von Satz 12 der Vorlesung und
- (c) mit dem ε - δ -Kriterium.

Aufgabe 4)

Zeigen Sie: Die Gleichung

$$x^2 + e^{x^3} = x^3 + 42\sqrt{x}$$

besitzt eine reelle Lösung.